Assessing Model Accuracy

Nate Wells

Math 243: Stat Learning

September 8th, 2021

Nate Wells (Math 243: Stat Learning)

Assessing Model Accuracy

September 8th, 2021 1 / 23

In today's class, we will...

In today's class, we will...

• Analyze data from the 'guess my age' activity

In today's class, we will...

- Analyze data from the 'guess my age' activity
- Discuss the Mean Squared Error as measure of model accuracy

In today's class, we will...

- Analyze data from the 'guess my age' activity
- Discuss the Mean Squared Error as measure of model accuracy
- Investigate the Bias-Variance trade-off

Section 1

How Old?

Nate Wells (Math 243: Stat Learning)

The task: Consider photos for 8 math and stats faculty at Reed. Estimate the age of each faculty member (at the time photo was taken).

• Was the How Old? activity supervised or unsupervised?

- Was the How Old? activity supervised or unsupervised?
- Did it represent a classification or regression problem?

- Was the How Old? activity supervised or unsupervised?
- Did it represent a classification or regression problem?
- Were you interested primarily in prediction or inference?

- Was the How Old? activity supervised or unsupervised?
- Did it represent a classification or regression problem?
- Were you interested primarily in prediction or inference?
- Did you use parametric or non-parametric methods?

The Results

Estimates for Reed Faculty Age

Debrief

- How should we quantify error?
- What are some sources for error in our estimates?
- How should we assess the overall accuracy of a group's predictions?
- Did any groups seem to consistently over- or under-estimate ages? By how much?
- Do any faculty member ages seem to consistently be over- or under-estimated?
- Are there any faculty members where the guesses seem to be in a particularly large or small range?

Section 2

Mean Squared Error

Nate Wells (Math 243: Stat Learning)

Goal: Devise a quantitative measurement of error for a model. Then develop a general algorithm for finding the model that minimizes this measure of error.

Goal: Devise a quantitative measurement of error for a model. Then develop a general algorithm for finding the model that minimizes this measure of error.

• For regression, the most common measure of error is the **Mean Squared Error** (MSE):

$$MSE(\hat{f}) = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \hat{f}(x_i) \right)^2$$

where \hat{f} is the model, the x_i are the observed predictor values, and the y_i are the corresponding observed response values.

Goal: Devise a quantitative measurement of error for a model. Then develop a general algorithm for finding the model that minimizes this measure of error.

• For regression, the most common measure of error is the **Mean Squared Error** (MSE):

$$MSE(\hat{f}) = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \hat{f}(x_i) \right)^2$$

where \hat{f} is the model, the x_i are the observed predictor values, and the y_i are the corresponding observed response values.

• Under what circumstances is MSE small?

Goal: Devise a quantitative measurement of error for a model. Then develop a general algorithm for finding the model that minimizes this measure of error.

• For regression, the most common measure of error is the **Mean Squared Error** (MSE):

$$MSE(\hat{f}) = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \hat{f}(x_i) \right)^2$$

where \hat{f} is the model, the x_i are the observed predictor values, and the y_i are the corresponding observed response values.

- Under what circumstances is MSE small?
- What are the problems with trying to minimize MSE on the set of observed data $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$?

Training and Test Data

• **Training Data** is the collection of data we use to build our model. Often, it is a subset of all data we have available.

- **Training Data** is the collection of data we use to build our model. Often, it is a subset of all data we have available.
- **Test Data** is the collection of data on which we assess the accuracy of our model. It should be distinct from the training data.

- **Training Data** is the collection of data we use to build our model. Often, it is a subset of all data we have available.
- **Test Data** is the collection of data on which we assess the accuracy of our model. It should be distinct from the training data.
- *Goal*: Use a model-building algorithm that builds model on **training data** in order to minimize MSE on a large number of unobserved **test data** points (*x*₀, *y*₀)

- **Training Data** is the collection of data we use to build our model. Often, it is a subset of all data we have available.
- **Test Data** is the collection of data on which we assess the accuracy of our model. It should be distinct from the training data.
- *Goal*: Use a model-building algorithm that builds model on **training data** in order to minimize MSE on a large number of unobserved **test data** points (*x*₀, *y*₀)
- i.e. minimize

$$\operatorname{Ave}\left(y_0 - \hat{f}(x_0)\right)^2$$

- **Training Data** is the collection of data we use to build our model. Often, it is a subset of all data we have available.
- **Test Data** is the collection of data on which we assess the accuracy of our model. It should be distinct from the training data.
- *Goal*: Use a model-building algorithm that builds model on **training data** in order to minimize MSE on a large number of unobserved **test data** points (*x*₀, *y*₀)
- i.e. minimize

$$\operatorname{Ave}\left(y_0 - \hat{f}(x_0)\right)^2$$

• If we have training and test data, we can construct a number of models on the training data, and compare their performance on the test data in order to select the best model

An Example

• Suppose we wish to predict students' final exam scores Y based on their first midterm scores X. We have data from two previous classes.

An Example

- Suppose we wish to predict students' final exam scores Y based on their first midterm scores X. We have data from two previous classes.
- Suppose e don't care about how well our model predicts exam scores for the previous classes. We want to know how well it predicts future scores.

An Example

- Suppose we wish to predict students' final exam scores Y based on their first midterm scores X. We have data from two previous classes.
- Suppose e don't care about how well our model predicts exam scores for the previous classes. We want to know how well it predicts future scores.
 - Use the first class as training data
 - Use the second class as test data

Training Set

```
##
##
scores %>% ggplot( aes(x = mid, y = final)) +
geom_point()+labs(title = "Class 1")
```


How Old?

Mean Squared Error

Model 1

scores %>% ggplot(aes(x = mid, y = final)) + geom_point()+ labs(title = "Class 1") + geom_smooth(method = "lm", se = FALSE)

Bias-Variance Trade-off 000000

Model 1 and 2

```
scores %>% ggplot( aes(x = mid, y = final)) + geom_point() +
labs(title = "Class 1") +
geom_smooth( method = "lm", se = FALSE) +
geom_smooth( method = "lm", formula = y ~ poly(x, 5), se = FALSE, color = "red")
```


Test Set

Class 2

Bias-Variance Trade-off 000000

Test Set with models

Class 2

MSE

Prediction accuracy

##	# 4	A tibble	e: 15 x 5			
##		actual	lin_pred	poly_pred	lin_sq_error	poly_sq_error
##		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	0.537	0.574	0.625	0.00139	0.00771
##	2	0.687	0.694	0.718	0.0000487	0.000988
##	3	0.576	0.499	0.0801	0.00582	0.245
##	4	0.727	0.675	0.681	0.00271	0.00211
##	5	0.685	0.720	0.754	0.00121	0.00469
##	6	0.781	0.758	0.751	0.000515	0.000871
##	7	0.627	0.544	0.595	0.00695	0.00101
##	8	0.622	0.657	0.647	0.00122	0.000585
##	9	0.725	0.658	0.647	0.00450	0.00603
##	10	0.780	0.655	0.642	0.0157	0.0191
##	11	0.667	0.635	0.614	0.00104	0.00283
##	12	0.685	0.721	0.754	0.00129	0.00485
##	13	0.802	0.824	0.864	0.000478	0.00381
##	14	0.577	0.557	0.623	0.000387	0.00211
##	15	0.650	0.712	0.746	0.00387	0.00925

MSE

Prediction accuracy

##	# 4	A tibble	e: 15 x 5			
##		actual	lin_pred	poly_pred	lin_sq_error	poly_sq_error
##		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	0.537	0.574	0.625	0.00139	0.00771
##	2	0.687	0.694	0.718	0.0000487	0.000988
##	3	0.576	0.499	0.0801	0.00582	0.245
##	4	0.727	0.675	0.681	0.00271	0.00211
##	5	0.685	0.720	0.754	0.00121	0.00469
##	6	0.781	0.758	0.751	0.000515	0.000871
##	7	0.627	0.544	0.595	0.00695	0.00101
##	8	0.622	0.657	0.647	0.00122	0.000585
##	9	0.725	0.658	0.647	0.00450	0.00603
##	10	0.780	0.655	0.642	0.0157	0.0191
##	11	0.667	0.635	0.614	0.00104	0.00283
##	12	0.685	0.721	0.754	0.00129	0.00485
##	13	0.802	0.824	0.864	0.000478	0.00381
##	14	0.577	0.557	0.623	0.000387	0.00211
##	15	0.650	0.712	0.746	0.00387	0.00925

Overall MSE

A tibble: 1 x 2
lin_mse poly_mse
<dbl> <dbl>
1 0.00315 0.0208

Bias-Variance Trade-off 000000

Minimize MSE subject to model shape

What if no test data is available?

What if no test data is available?

• Recall the setting of simple linear regression from Math 141.

What if no test data is available?

• Recall the setting of simple linear regression from Math 141.

We can choose a model that minimizes MSE on the training set, subject to constraints (i.e. restricting to linear, quadratic, exponential models)

What if no test data is available?

• Recall the setting of simple linear regression from Math 141.

We can choose a model that minimizes $\rm MSE$ on the training set, subject to constraints (i.e. restricting to linear, quadratic, exponential models)

But no guarantee that model which minimizes $\ensuremath{\mathrm{MSE}}$ on training data will also do so on test data.

What if no test data is available?

• Recall the setting of simple linear regression from Math 141.

We can choose a model that minimizes MSE on the training set, subject to constraints (i.e. restricting to linear, quadratic, exponential models)

But no guarantee that model which minimizes $\ensuremath{\mathrm{MSE}}$ on training data will also do so on test data.

In fact, when selecting a complex model that minimizes $\rm MSE$ on the training data, the test $\rm MSE$ will often be very large!

Section 3

Bias-Variance Trade-off

Nate Wells (Math 243: Stat Learning)

Training vs Test MSE

Suppose we consider a variety of model shapes to predict Y, with each model of increasing complexity. What happens to the training MSE and the test MSE as model complexity increases?

The U-curve for test MSE is a result of competition between two sources of error in a model $% \left({{{\rm{S}}}_{{\rm{S}}}} \right)$

The U-curve for test MSE is a result of competition between two sources of error in a model $% \left({{{\rm{S}}}{{\rm{S}}}{\rm{S}}{\rm{T}}} \right)$

Expected test MSE can be decomposed as the sum of 3 quantities:

$$\mathrm{E}(y_0 - \hat{f}(x_0)) = \mathrm{Var}(\hat{f}(x_0)) + \left[\mathrm{Bias}(\hat{f}(x_0))\right]^2 + \mathrm{Var}(\epsilon)$$

The U-curve for test MSE is a result of competition between two sources of error in a model $% \left({{{\rm{S}}}_{{\rm{S}}}} \right)$

Expected test MSE can be decomposed as the sum of 3 quantities:

$$\mathrm{E}(y_0 - \hat{f}(x_0)) = \mathrm{Var}(\hat{f}(x_0)) + \left[\mathrm{Bias}(\hat{f}(x_0))\right]^2 + \mathrm{Var}(\epsilon)$$

 Where E(y₀ - f(x₀)) denotes expected test MSE at x₀, if many models for f were built using a variety of random training data sets.

The U-curve for test MSE is a result of competition between two sources of error in a model $% \left({{{\rm{S}}}_{{\rm{S}}}} \right)$

Expected test MSE can be decomposed as the sum of 3 quantities:

$$\mathrm{E}(y_0 - \hat{f}(x_0)) = \mathrm{Var}(\hat{f}(x_0)) + \left[\mathrm{Bias}(\hat{f}(x_0))\right]^2 + \mathrm{Var}(\epsilon)$$

- Where E(y₀ f(x₀)) denotes expected test MSE at x₀, if many models for f were built using a variety of random training data sets.
- Overall expected test MSE is obtained by averaging across all possible x₀ in the test set.

The U-curve for test MSE is a result of competition between two sources of error in a model $% \left({{{\rm{S}}}_{{\rm{S}}}} \right)$

Expected test MSE can be decomposed as the sum of 3 quantities:

$$\mathrm{E}(y_0 - \hat{f}(x_0)) = \mathrm{Var}(\hat{f}(x_0)) + \left[\mathrm{Bias}(\hat{f}(x_0))\right]^2 + \mathrm{Var}(\epsilon)$$

- Where E(y₀ f(x₀)) denotes expected test MSE at x₀, if many models for f were built using a variety of random training data sets.
- Overall expected test MSE is obtained by averaging across all possible x₀ in the test set.
- A proof is given in Section 7.3 of The Elements of Statistical Learning

The U-curve for test MSE is a result of competition between two sources of error in a model

Expected test MSE can be decomposed as the sum of 3 quantities:

$$\mathrm{E}(y_0 - \hat{f}(x_0)) = \mathrm{Var}(\hat{f}(x_0)) + \left[\mathrm{Bias}(\hat{f}(x_0))\right]^2 + \mathrm{Var}(\epsilon)$$

- Where E(y₀ f(x₀)) denotes expected test MSE at x₀, if many models for f were built using a variety of random training data sets.
- Overall expected test MSE is obtained by averaging across all possible x₀ in the test set.
- A proof is given in Section 7.3 of The Elements of Statistical Learning

To minimize MSE, we need to *simultaneously* minimize both variance and bias.

• Variance refers to the amount of variability in $\hat{f}(x_0)$ across training sets

- Variance refers to the amount of variability in $\hat{f}(x_0)$ across training sets
 - What type of models tend to have low/high variance?

- Variance refers to the amount of variability in $\hat{f}(x_0)$ across training sets
 - What type of models tend to have low/high variance?

- **Bias** refers to amount by which the average of estimates $\hat{f}(x_0)$ differs from the true value of $f(x_0)$
 - · Bias is produced by the difference between model shape assumptions and reality

- Variance refers to the amount of variability in $\hat{f}(x_0)$ across training sets
 - What type of models tend to have low/high variance?

- **Bias** refers to amount by which the average of estimates $\hat{f}(x_0)$ differs from the true value of $f(x_0)$
 - · Bias is produced by the difference between model shape assumptions and reality
 - What type of models tend to have low/high bias?

Target Practice

Bias-Variance Trade-off 00000●

The Trade-off

What is the problem?

Bias-Variance Trade-off 00000●

The Trade-off

What is the problem?

How do we solve it?