Foundations of Statistical Learning

Nate Wells

Math 243: Stat Learning

September 3rd, 2021

Methods of Stat Learning 0000	

In today's class, we will...

What is Stat Learning?	Methods of Stat Learning	

In today's class, we will...

• Discuss the goals of statistical learning algorithms

What is Stat Learning?	Methods of Stat Learning	

In today's class, we will...

- Discuss the goals of statistical learning algorithms
- Survey some of the most common methods for statistical learning

In today's class, we will...

- Discuss the goals of statistical learning algorithms
- Survey some of the most common methods for statistical learning
- Analyze data from the 'guess my age' activity

Section 1

What is Stat Learning?

What is Stat Learning?	Methods of Stat Learning	How Old?
O●OOOO	0000	0000
The Setting		

• Fundamentally, stat learning is the study of the relationships between predictor variables X_1, \ldots, X_p for a population, and one or more response variables Y_1, Y_2, \ldots

What is Stat Learning?	Methods of Stat Learning	How Old?
0●0000	0000	0000
The Setting		

- Fundamentally, stat learning is the study of the relationships between predictor variables X_1, \ldots, X_p for a population, and one or more response variables Y_1, Y_2, \ldots
 - Sometimes, we'll study the relationship among predictor variables in isolation (no response)

What is Stat Learning? 0●0000	Methods of Stat Learning 0000	

- Fundamentally, stat learning is the study of the relationships between predictor variables X_1, \ldots, X_p for a population, and one or more response variables Y_1, Y_2, \ldots .
 - Sometimes, we'll study the relationship among predictor variables in isolation (no response)
- In the simplest case, we observe the values of one quantitative response Y, as well as p many predictors X_1, \ldots, X_p .

- Fundamentally, stat learning is the study of the relationships between predictor variables X_1, \ldots, X_p for a population, and one or more response variables Y_1, Y_2, \ldots .
 - Sometimes, we'll study the relationship among predictor variables in isolation (no response)
- In the simplest case, we observe the values of one quantitative response Y, as well as p many predictors X₁,..., X_p.
- We assume there is a (usually unknown) relationship between these observed values:

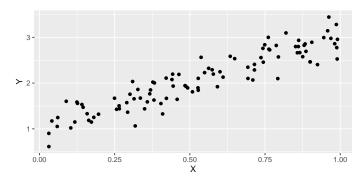
$$Y = f(X_1, \ldots, X_p) + \epsilon$$

- Fundamentally, stat learning is the study of the relationships between predictor variables X_1, \ldots, X_p for a population, and one or more response variables Y_1, Y_2, \ldots .
 - Sometimes, we'll study the relationship among predictor variables in isolation (no response)
- In the simplest case, we observe the values of one quantitative response Y, as well as p many predictors X₁,..., X_p.
- We assume there is a (usually unknown) relationship between these observed values:

$$Y = f(X_1, \ldots, X_p) + \epsilon$$

• Here, ϵ denotes a random or unobserved error term **independent** of X_1, \ldots, X_p

- Fundamentally, stat learning is the study of the relationships between predictor variables X_1, \ldots, X_p for a population, and one or more response variables Y_1, Y_2, \ldots .
 - Sometimes, we'll study the relationship among predictor variables in isolation (no response)
- In the simplest case, we observe the values of one quantitative response Y, as well as p many predictors X₁,..., X_p.
- We assume there is a (usually unknown) relationship between these observed values:

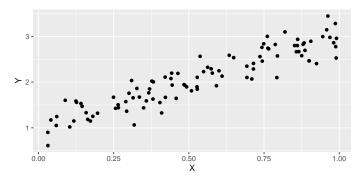

$$Y = f(X_1, \ldots, X_p) + \epsilon$$

- Here, ϵ denotes a random or unobserved error term **independent** of X_1, \ldots, X_p
- The overarching goal of stat learning is to estimate f, given data on X and Y.

What is Stat Learning?	
00000	

An Example

Consider the following observations for variables X and Y



What is the relationship between X and Y?

What is Stat Learning?	
00000	

An Example

Consider the following observations for variables X and Y

What is the relationship between X and Y?

```
X = runif(100, 0,1)
E = rnorm(100, 0, .25)
Y = 2*X + 1 + E
```

Prediction is useful in settings where X can be observed, but Y cannot. Ex:

• Suppose for each Reed faculty, we know the number of years X between when their undergrad degree was awarded and when their faculty picture was taken.

- Suppose for each Reed faculty, we know the number of years X between when their undergrad degree was awarded and when their faculty picture was taken.
- Ultimately, we want to estimate the age Y of each faculty member.

- Suppose for each Reed faculty, we know the number of years X between when their undergrad degree was awarded and when their faculty picture was taken.
- Ultimately, we want to estimate the age Y of each faculty member.
- To do so, we theorize a model that takes in X as input and outputs our best guess Ŷ for Y.

- Suppose for each Reed faculty, we know the number of years X between when their undergrad degree was awarded and when their faculty picture was taken.
- Ultimately, we want to estimate the age Y of each faculty member.
- To do so, we theorize a model that takes in X as input and outputs our best guess Ŷ for Y.
 - What is one such possible model f?

- Suppose for each Reed faculty, we know the number of years X between when their undergrad degree was awarded and when their faculty picture was taken.
- Ultimately, we want to estimate the age Y of each faculty member.
- To do so, we theorize a model that takes in X as input and outputs our best guess Ŷ for Y.
 - What is one such possible model f?
- But even if we have a perfect estimate for f in $Y = f(X) + \epsilon$, the predicted value $\hat{Y} = f(X)$ of Y may not equal Y, since Y also depends on ϵ .

- Suppose for each Reed faculty, we know the number of years X between when their undergrad degree was awarded and when their faculty picture was taken.
- Ultimately, we want to estimate the age Y of each faculty member.
- To do so, we theorize a model that takes in X as input and outputs our best guess Ŷ for Y.
 - What is one such possible model f?
- But even if we have a perfect estimate for f in $Y = f(X) + \epsilon$, the predicted value $\hat{Y} = f(X)$ of Y may not equal Y, since Y also depends on ϵ .
 - What is one source of error ϵ in the previous model?

What is Stat Learning?	Methods of Stat Learning	
000000		

In general, there are two sources of error in a model $\hat{Y} = \hat{f}(X_1, \dots, X_p) + \epsilon$ for the relationship

$$Y = f(X_1, \ldots, X_p) + \epsilon$$

What is	Stat	Learning?
00000	0	

In general, there are two sources of error in a model $\hat{Y} = \hat{f}(X_1, \dots, X_p) + \epsilon$ for the relationship

$$Y = f(X_1, \ldots, X_p) + \epsilon$$

1 Reducible error, in the form of our estimate \hat{f} for f.

In general, there are two sources of error in a model $\hat{Y} = \hat{f}(X_1, \dots, X_p) + \epsilon$ for the relationship

$$Y = f(X_1, \ldots, X_p) + \epsilon$$

() Reducible error, in the form of our estimate \hat{f} for f.

2 Irreducible error, in the form of ϵ

In general, there are two sources of error in a model $\hat{Y} = \hat{f}(X_1, \dots, X_\rho) + \epsilon$ for the relationship

$$Y = f(X_1, \ldots, X_p) + \epsilon$$

() Reducible error, in the form of our estimate \hat{f} for f.

2 Irreducible error, in the form of ϵ

What steps can be taken to improve reducible error?

In general, there are two sources of error in a model $\hat{Y} = \hat{f}(X_1, \dots, X_p) + \epsilon$ for the relationship

$$Y = f(X_1, \ldots, X_p) + \epsilon$$

- **()** Reducible error, in the form of our estimate \hat{f} for f.
- **2** Irreducible error, in the form of ϵ

What steps can be taken to improve reducible error?

What about irreducible error?

What is Stat Learning?	Methods of Stat Learning	How Old?
00000●	0000	0000
Inference		

In many settings, we are interested in the relationship between each predictor X_1, \ldots, X_p and the response Y.

What is Stat Learning?	Methods of Stat Learning	How Old?
00000●	0000	0000
Inference		

In many settings, we are interested in the relationship between each predictor X_1, \ldots, X_p and the response Y.

• Which predictors are likely to be associated with response?

What is Stat Learning? 00000●	Methods of Stat Learning 0000	

In many settings, we are interested in the relationship between each predictor X_1, \ldots, X_p and the response Y.

- Which predictors are likely to be associated with response?
- What is the degree and strength of the relationship between significant predictors and the response?

What is Stat Learning? 00000●	Methods of Stat Learning 0000	

In many settings, we are interested in the relationship between each predictor X_1, \ldots, X_p and the response Y.

- Which predictors are likely to be associated with response?
- What is the degree and strength of the relationship between significant predictors and the response?
- What type of relationship exists between the predictors and the response? (Linear? Exponential? Something more complicated?)

What is Stat Learning?	
00000	

In many settings, we are interested in the relationship between each predictor X_1, \ldots, X_p and the response Y.

- Which predictors are likely to be associated with response?
- What is the degree and strength of the relationship between significant predictors and the response?
- What type of relationship exists between the predictors and the response? (Linear? Exponential? Something more complicated?)

Ex:

A data set contains information on a professor's age, gender, tenure-status, ethnicity, and department. Which of these predictors are associated with course evaluation scores, and how?

What is Stat Learning?	Methods of Stat Learning	
00000		

In many settings, we are interested in the relationship between each predictor X_1, \ldots, X_p and the response Y.

- Which predictors are likely to be associated with response?
- What is the degree and strength of the relationship between significant predictors and the response?
- What type of relationship exists between the predictors and the response? (Linear? Exponential? Something more complicated?)

Ex:

A data set contains information on a professor's age, gender, tenure-status, ethnicity, and department. Which of these predictors are associated with course evaluation scores, and how?

Here, we are trying to ${\bf infer}$ information about the factors which contribute to course eval score.

Section 2

Methods of Stat Learning

What is Stat Learning?	Methods of Stat Learning	
	0000	

Parametric methods for estimating f involve two steps:

Based on domain knowledge, make assumptions about the functional form or shape of *f*.

What is Stat Learning?	Methods of Stat Learning	
	0000	

Parametric methods for estimating f involve two steps:

- Based on domain knowledge, make assumptions about the functional form or shape of *f*.
- The linear model is a common choice for the shape of *f*:

$$\begin{split} f(X) = & \beta_0 + \beta_1 X_1 \quad \text{simple linear} \\ f(X) = & \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p \quad \text{multilinear} \end{split}$$

What is Stat Learning?	Methods of Stat Learning	
	0000	

Parametric methods for estimating f involve two steps:

- Based on domain knowledge, make assumptions about the functional form or shape of *f*.
- The linear model is a common choice for the shape of *f*:

$$\begin{split} f(X) = & \beta_0 + \beta_1 X_1 \quad \text{simple linear} \\ f(X) = & \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p \quad \text{multilinear} \end{split}$$

After a model has been chosen, we implement a procedure for estimating the parameters of the model that minimizes the reducible error.

What is Stat Learning?	Methods of Stat Learning	
	0000	

Parametric methods for estimating f involve two steps:

- Based on domain knowledge, make assumptions about the functional form or shape of *f*.
- The linear model is a common choice for the shape of *f* :

$$\begin{split} f(X) = & \beta_0 + \beta_1 X_1 \quad \text{simple linear} \\ f(X) = & \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p \quad \text{multilinear} \end{split}$$

- After a model has been chosen, we implement a procedure for estimating the parameters of the model that minimizes the reducible error.
- In the case of the linear model, we estimate the values of β_0, \ldots, β_p using the *method* of *least squares*.

$$\hat{\beta}_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} \qquad \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

What is Stat Learning?	Methods of Stat Learning	
	0000	

What is Stat Learning?	Methods of Stat Learning	
	0000	

Non-parametric methods forgo assumptions on the shape of f, working instead in a very general class of functions.

• In doing so, non-parametric models avoid the problem of mischaracterizing the relationship between predictors and response

What is Stat Learning?	Methods of Stat Learning	
	0000	

- In doing so, non-parametric models avoid the problem of mischaracterizing the relationship between predictors and response
- However, non-parametric models run the risk of **overfitting**, where the model closely matches the observed data, but does not represent the true unobserved relationship between the variables

Methods of Stat Learning	
0000	

- In doing so, non-parametric models avoid the problem of mischaracterizing the relationship between predictors and response
- However, non-parametric models run the risk of **overfitting**, where the model closely matches the observed data, but does not represent the true unobserved relationship between the variables
 - How is this possible?

Methods of Stat Learning	
0000	

- In doing so, non-parametric models avoid the problem of mischaracterizing the relationship between predictors and response
- However, non-parametric models run the risk of **overfitting**, where the model closely matches the observed data, but does not represent the true unobserved relationship between the variables
 - How is this possible?
- Non-parametric models often require orders of magnitude more data to make accurate predictions, compared to parametric models

Methods of Stat Learning	
0000	

- In doing so, non-parametric models avoid the problem of mischaracterizing the relationship between predictors and response
- However, non-parametric models run the risk of **overfitting**, where the model closely matches the observed data, but does not represent the true unobserved relationship between the variables
 - How is this possible?
- Non-parametric models often require orders of magnitude more data to make accurate predictions, compared to parametric models
- Some examples of non-parametric models include: Spline Regression, Support Vector Machines, and Neural Networks

What is Stat Learning?	Methods of Stat Learning	
	0000	

Most statistical learning techniques fall into one of two categories:

Most statistical learning techniques fall into one of two categories:

- Supervised learning, in which predictors are compared with one or more response variables.
 - Because we have both predicted and actual values of response, we can assess the accuracy of the model.
- **2** Unsupervised learning, in which patterns and trends are detected in the predictors without reference to a response variable.
 - There is no available metric to determine when the model is performing "well"

Most statistical learning techniques fall into one of two categories:

- Supervised learning, in which predictors are compared with one or more response variables.
 - Because we have both predicted and actual values of response, we can assess the accuracy of the model.
- **2** Unsupervised learning, in which patterns and trends are detected in the predictors without reference to a response variable.
 - There is no available metric to determine when the model is performing "well"

Statistical learning problems also fall into a pair of categories:

Most statistical learning techniques fall into one of two categories:

- Supervised learning, in which predictors are compared with one or more response variables.
 - Because we have both predicted and actual values of response, we can assess the accuracy of the model.
- **2** Unsupervised learning, in which patterns and trends are detected in the predictors without reference to a response variable.
 - There is no available metric to determine when the model is performing "well"

Statistical learning problems also fall into a pair of categories:

• Regression problems, wherein we measure the magnitude of a **quantitative** response variable

Most statistical learning techniques fall into one of two categories:

- Supervised learning, in which predictors are compared with one or more response variables.
 - Because we have both predicted and actual values of response, we can assess the accuracy of the model.
- **2** Unsupervised learning, in which patterns and trends are detected in the predictors without reference to a response variable.
 - There is no available metric to determine when the model is performing "well"

Statistical learning problems also fall into a pair of categories:

- Regression problems, wherein we measure the magnitude of a **quantitative** response variable
- Ø Classification problems, wherein we sort a qualitative response variable into several discrete classes.

Section 3

How Old?

Nate Wells (Math 243: Stat Learning)

	How Old? 0●00

Methods of Stat Learning 0000	How Old? O●OO

The task: Consider photos for 8 math and stats faculty at Reed. Estimate the age of each faculty member (at the time photo was taken).

• Was the How Old? activity supervised or unsupervised?

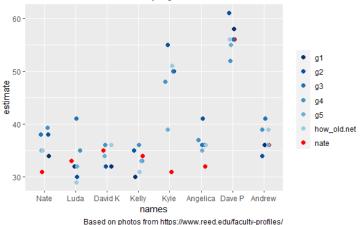
Methods of Stat Learning 0000	How Old? 0●00

- Was the How Old? activity supervised or unsupervised?
- Did it represent a classification or regression problem?

Methods of Stat Learning 0000	How Old? 0●00

- Was the How Old? activity supervised or unsupervised?
- Did it represent a classification or regression problem?
- Were you interested primarily in prediction or inference?

	How Old? 0●00



- Was the How Old? activity supervised or unsupervised?
- Did it represent a classification or regression problem?
- Were you interested primarily in prediction or inference?
- Did you use parametric or non-parametric methods?

		How Old?
000000	0000	0000

The Results

Estimates for Reed Faculty Age

Debrief

- How should we quantify error?
- What are some sources for error in our estimates?
- How should we assess the overall accuracy of a group's predictions?
- Did any groups seem to consistently over- or under-estimate ages? By how much?
- Do any faculty member ages seem to consistently be over- or under-estimated?
- Are there any faculty members where the guesses seem to be in a particularly large or small range?