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Outline

In today's class, we will. ..
® Discuss the bootstrap for estimating variance of error

® |Implement bootstrapping in R
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So, you want to know how a particular statistic is distributed?
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® Suppose you are interested in the distribution of slopes 33 of the interaction term in
an MLR model under random sampling:
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® Suppose you are interested in the distribution of slopes 33 of the interaction term in
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Why Bootstrap?

So, you want to know how a particular statistic is distributed?

® Suppose you are interested in the distribution of slopes 33 of the interaction term in
an MLR model under random sampling:

¥ = Bo+ Bix + Baxo + Bzxixe
® The classic approach:
® Write the statistic 53 as a function of the random observations xi, -, x, and use

properties of random variables to derive the theoretical distribution. Make some
(sometimes unreasable) simplifying assumptions
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Why Bootstrap?

So, you want to know how a particular statistic is distributed?

® Suppose you are interested in the distribution of slopes 33 of the interaction term in
an MLR model under random sampling:

¥ = Bo+ Bix + Baxo + Bzxixe
® The classic approach:
® Write the statistic 53 as a function of the random observations xi, -, x, and use
properties of random variables to derive the theoretical distribution. Make some

(sometimes unreasable) simplifying assumptions

® Look up the theoretical distribution based on someone else’s attempt to do part (1).
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Why Bootstrap?

So, you want to know how a particular statistic is distributed?

® Suppose you are interested in the distribution of slopes 33 of the interaction term in
an MLR model under random sampling:

9 = Bo+ Bix + Boxo + Paxixa

® The classic approach:

Write the statistic 53 as a function of the random observations xi, -, x, and use
properties of random variables to derive the theoretical distribution. Make some
(sometimes unreasable) simplifying assumptions

Look up the theoretical distribution based on someone else’s attempt to do part (1).

Hope that the sample size is large enough to allow the Central Limit Theorem to come
into play so that the statistic is approximately Normal
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The Resampling Approach

As an alternative to using the theoretical distribution, use simulation to approximate.
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As an alternative to using the theoretical distribution, use simulation to approximate.
® The optimistic approach:

® Generate a large number of samples and compute the statistic of interest on each

® Plot and summarize the distribution of the statistic.
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As an alternative to using the theoretical distribution, use simulation to approximate.

® The optimistic approach:
® Generate a large number of samples and compute the statistic of interest on each

® Plot and summarize the distribution of the statistic.

® The problem?
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The Resampling Approach

As an alternative to using the theoretical distribution, use simulation to approximate.

® The optimistic approach:
® Generate a large number of samples and compute the statistic of interest on each

® Plot and summarize the distribution of the statistic.
® The problem?

® The bootstrap approach:
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The Resampling Approach

As an alternative to using the theoretical distribution, use simulation to approximate.
® The optimistic approach:

® Generate a large number of samples and compute the statistic of interest on each
® Plot and summarize the distribution of the statistic.

® The problem?
® The bootstrap approach:

® Assume that your sample is large enough to be “representative” of your population.
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The Resampling Approach

As an alternative to using the theoretical distribution, use simulation to approximate.
® The optimistic approach:
® Generate a large number of samples and compute the statistic of interest on each
® Plot and summarize the distribution of the statistic.
® The problem?
® The bootstrap approach:
® Assume that your sample is large enough to be “representative” of your population.

® Create a new bootstrap sample by sampling with replacement from your original
sample, a number of times equal to your original sample size.
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The Resampling Approach

As an alternative to using the theoretical distribution, use simulation to approximate.
® The optimistic approach:
® Generate a large number of samples and compute the statistic of interest on each
® Plot and summarize the distribution of the statistic.
® The problem?
® The bootstrap approach:
® Assume that your sample is large enough to be “representative” of your population.

® Create a new bootstrap sample by sampling with replacement from your original
sample, a number of times equal to your original sample size.

® Repeat the process to create many bootstrap samples. Compute the statistic of interest
on each and plot the results.

September 27th, 2021
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Bootstrap Dem

Suppose Y =142 X, +3 - Xo + X1 - Xa + € with € ~ N(0,0.25).

set.seed(10101)

n<-100

X1<-runif(n, 0, 1)

X2 <- runif(n, 0, 1)
e<-rnorm(n, 0 ,.5)

Y<-1 + 2#X1 + 3%X2 + X1#X2+ e
d<-data.frame(X1, X2, Y)

One Sample from True Model
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Bootstrap Demo

my_mod<-1m(Y ~ X1%X2, data = d)
summary (my_mod) $coefficients

#it Estimate Std. Error t value Pr(>|tl)

## (Intercept) 1.447174

## X1 1.317290
## X2 2.405724
## X1:X2 2.044325

0.2100171 6.890742 5.807042e-10
0.3803365 3.463485 7.982768e-04
0.4102938 5.863417 6.404175e-08
0.7415455 2.756844 6.985948e-03

b3 <- my_mod$coefficients[4]

Nate Wells (Math 243: Stat Learning)

The Bootstrap

September 27th, 2021

7

/14



The Bootstrap
000008000000

The Simulation Approach

set.seed(234)

trials<-1000 #Number of simulations

n<-100 #Number points in each simulation

Xi<-runif(n, 0, 1) # Generate random X1; same for all sims
X2 <- runif(n, 0, 1) # Generate random X1; same for all sims
slopes<-data.frame() #Create empty dataframe for the slopes

for (i in 1:trials){
sim_e<-rnorm(n, 0 ,.5)
sim_Y<-1 + 2#X1 + 3%X2 + X1*X2+ sim_e
sim_d<-data.frame(X1, X2, sim_Y)
sim_mod<-1lm(sim_Y ~ X1*X2, data = sim_d)
slopes<-rbind( slopes,
data.frame(slope = summary(sim_mod)$coefficients([4,1]))

}

head(slopes)

## slope
## 1 0.5494089
## 2 1.4382129
## 3 0.9934332
## 4 0.7086642
## 5 -0.9140541
## 6 1.8136110
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Simulation Distribution

Simulated Distribution of Slopes

True Slope
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slopes %>}, summarize(mean_slope = mean(slope), sd_slope = sd(slope))

## mean_slope sd_slope
## 1 0.9895467 0.6620953
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The Bootstrap Approach

We have 1 sample:

head(d)

## X1 X2 Y
## 1 0.1903066 0.1056760 1.275277
## 2 0.9108393 0.6749109 4.690218
## 3 0.2277161 0.1748862 2.455955
## 4 0.8249905 0.7360649 5.719890
## 5 0.9155760 0.8434911 6.849461
## 6 0.5052083 0.7491072 4.589090

But we can create a bootstrap sample:

set.seed(135)
a_bootstrap_sample<-slice_sample(d, n = n, replace = T)
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The Bootstrap Approach

We have 1 sample:

head(d)

## X1 X2 Y
## 1 0.1903066 0.1056760 1.275277
## 2 0.9108393 0.6749109 4.690218
## 3 0.2277161 0.1748862 2.455955
## 4 0.8249905 0.7360649 5.719890
## 5 0.9155760 0.8434911 6.849461
## 6 0.5052083 0.7491072 4.589090

But we can create a bootstrap sample:

set.seed(135)
a_bootstrap_sample<-slice_sample(d, n = n, replace = T)

Duplicates?

common<-intersect (a_bootstrap_sample, d)
length(common$X1)

## [1] 66
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The Bootstrap Approach, cont'd

Now, we create 1000 bootstraps and calculate the slope of each
# Create a function to compute statistic from bootstrap sample
set.seed(929)
interaction_slope <- function(split){
x <- analysis(split)
boot_mod <-1m(Y ~ X1#X2 , data = x)
slope <- boot_mod$coefficients[4]
slope
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The Bootstrap Approach, cont'd

Now, we create 1000 bootstraps and calculate the slope of each
# Create a function to compute statistic from bootstrap sample
set.seed(929)
interaction_slope <- function(split){
x <- analysis(split)
boot_mod <-1m(Y ~ X1#X2 , data = x)
slope <- boot_mod$coefficients[4]
slope
}

# Use rsample to create bootstrap samples and apply function
library(rsample)

bt_resamples <- bootstraps(d, times = 1000)

bt_resamples$slope <- map_dbl(bt_resamples$splits, interaction_slope)
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Bootstrap Distribution

Bootstrap Distribution of Slopes
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bt_resamples 7>, summarize(mean_slope = mean(slope), sd_slope = sd(slope))

Sample Slope

count

slope

## mean_slope sd_slope
## 1 2.026826 0.6849343
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Side-by-Side Comparison

Simulated Distribution of Slopes Bootstrap Distribution of Slopes
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Side-by-Side Comparison

Simulated Distribution of Slopes Bootstrap Distribution of Slopes

True Slope
90 90 True Slope Sample Slope
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slope

rbind(slopes, bt_resamples 7>’ select(slope)) %>%
cbind(method = rep(c("sim", "boot"), each = 1000)) %>%
group_by(method) %>’ summarize(mean_slope = mean(slope), sd_slope = sd(slope),
q.025 = quantile(slope,.025), q.975 = quantile(slope, .975))

## # A tibble: 2 x 6
## method mean_slope sd_slope q.025 q.975

## <fct> <dbl> <dbl> <dbl> <dbl>
## 1 boot 2.03 0.685 0.620 3.34
## 2 sim 0.990 0.662 -0.286 2.27
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CV verus Bootstrapping

Both are computationally intensive methods that involve sampling from your data set to
learn more about your estimate/model.
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CV verus Bootstrapping

Both are computationally intensive methods that involve sampling from your data set to
learn more about your estimate/model.

Cross-validation: Often used for model assessment and model selection.
® Partition data into test and train
® Fit model to train, predict on test
® |terate though all possible folds

® Compute aggregate measure of predictive ability
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Both are computationally intensive methods that involve sampling from your data set to
learn more about your estimate/model.

Cross-validation: Often used for model assessment and model selection.
® Partition data into test and train
® Fit model to train, predict on test
® |terate though all possible folds
® Compute aggregate measure of predictive ability

Bootstrapping: Often used for quantifying uncertainty.
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CV verus Bootstrapping

Both are computationally intensive methods that involve sampling from your data set to
learn more about your estimate/model.

Cross-validation: Often used for model assessment and model selection.
® Partition data into test and train
® Fit model to train, predict on test
® |terate though all possible folds
® Compute aggregate measure of predictive ability

Bootstrapping: Often used for quantifying uncertainty.
® Draw a bootstrap sample of size n from your data with replacement.
® Compute estimate of interest

® Consider distribution of bootstrap estimates over many samples

Nate Wells (Math 243: Stat Learning) The Bootstrap September 27th, 2021 14 /14



	The Bootstrap

