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The Bootstrap

Outline

In today’s class, we will. . .
• Discuss the bootstrap for estimating variance of error
• Implement bootstrapping in R
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Section 1

The Bootstrap
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The Bootstrap

Why Bootstrap?

So, you want to know how a particular statistic is distributed?

• Suppose you are interested in the distribution of slopes β̂3 of the interaction term in
an MLR model under random sampling:

ŷ = β̂0 + β̂1x + β̂2x2 + β̂3x1x2

• The classic approach:
• Write the statistic β̂3 as a function of the random observations x1, ·, xn and use

properties of random variables to derive the theoretical distribution. Make some
(sometimes unreasable) simplifying assumptions

• Look up the theoretical distribution based on someone else’s attempt to do part (1).
• Hope that the sample size is large enough to allow the Central Limit Theorem to come

into play so that the statistic is approximately Normal
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ŷ = β̂0 + β̂1x + β̂2x2 + β̂3x1x2

• The classic approach:
• Write the statistic β̂3 as a function of the random observations x1, ·, xn and use

properties of random variables to derive the theoretical distribution. Make some
(sometimes unreasable) simplifying assumptions

• Look up the theoretical distribution based on someone else’s attempt to do part (1).
• Hope that the sample size is large enough to allow the Central Limit Theorem to come

into play so that the statistic is approximately Normal

Nate Wells (Math 243: Stat Learning) The Bootstrap September 27th, 2021 4 / 14



The Bootstrap

The Resampling Approach

As an alternative to using the theoretical distribution, use simulation to approximate.

• The optimistic approach:
• Generate a large number of samples and compute the statistic of interest on each
• Plot and summarize the distribution of the statistic.
• The problem?

• The bootstrap approach:
• Assume that your sample is large enough to be “representative” of your population.
• Create a new bootstrap sample by sampling with replacement from your original

sample, a number of times equal to your original sample size.
• Repeat the process to create many bootstrap samples. Compute the statistic of interest

on each and plot the results.

Nate Wells (Math 243: Stat Learning) The Bootstrap September 27th, 2021 5 / 14



The Bootstrap

The Resampling Approach

As an alternative to using the theoretical distribution, use simulation to approximate.
• The optimistic approach:

• Generate a large number of samples and compute the statistic of interest on each
• Plot and summarize the distribution of the statistic.
• The problem?

• The bootstrap approach:
• Assume that your sample is large enough to be “representative” of your population.
• Create a new bootstrap sample by sampling with replacement from your original

sample, a number of times equal to your original sample size.
• Repeat the process to create many bootstrap samples. Compute the statistic of interest

on each and plot the results.

Nate Wells (Math 243: Stat Learning) The Bootstrap September 27th, 2021 5 / 14



The Bootstrap

The Resampling Approach

As an alternative to using the theoretical distribution, use simulation to approximate.
• The optimistic approach:

• Generate a large number of samples and compute the statistic of interest on each

• Plot and summarize the distribution of the statistic.
• The problem?

• The bootstrap approach:
• Assume that your sample is large enough to be “representative” of your population.
• Create a new bootstrap sample by sampling with replacement from your original

sample, a number of times equal to your original sample size.
• Repeat the process to create many bootstrap samples. Compute the statistic of interest

on each and plot the results.

Nate Wells (Math 243: Stat Learning) The Bootstrap September 27th, 2021 5 / 14



The Bootstrap

The Resampling Approach

As an alternative to using the theoretical distribution, use simulation to approximate.
• The optimistic approach:

• Generate a large number of samples and compute the statistic of interest on each
• Plot and summarize the distribution of the statistic.

• The problem?

• The bootstrap approach:
• Assume that your sample is large enough to be “representative” of your population.
• Create a new bootstrap sample by sampling with replacement from your original

sample, a number of times equal to your original sample size.
• Repeat the process to create many bootstrap samples. Compute the statistic of interest

on each and plot the results.

Nate Wells (Math 243: Stat Learning) The Bootstrap September 27th, 2021 5 / 14



The Bootstrap

The Resampling Approach

As an alternative to using the theoretical distribution, use simulation to approximate.
• The optimistic approach:

• Generate a large number of samples and compute the statistic of interest on each
• Plot and summarize the distribution of the statistic.
• The problem?

• The bootstrap approach:
• Assume that your sample is large enough to be “representative” of your population.
• Create a new bootstrap sample by sampling with replacement from your original

sample, a number of times equal to your original sample size.
• Repeat the process to create many bootstrap samples. Compute the statistic of interest

on each and plot the results.

Nate Wells (Math 243: Stat Learning) The Bootstrap September 27th, 2021 5 / 14



The Bootstrap

The Resampling Approach

As an alternative to using the theoretical distribution, use simulation to approximate.
• The optimistic approach:

• Generate a large number of samples and compute the statistic of interest on each
• Plot and summarize the distribution of the statistic.
• The problem?

• The bootstrap approach:

• Assume that your sample is large enough to be “representative” of your population.
• Create a new bootstrap sample by sampling with replacement from your original

sample, a number of times equal to your original sample size.
• Repeat the process to create many bootstrap samples. Compute the statistic of interest

on each and plot the results.

Nate Wells (Math 243: Stat Learning) The Bootstrap September 27th, 2021 5 / 14



The Bootstrap

The Resampling Approach

As an alternative to using the theoretical distribution, use simulation to approximate.
• The optimistic approach:

• Generate a large number of samples and compute the statistic of interest on each
• Plot and summarize the distribution of the statistic.
• The problem?

• The bootstrap approach:
• Assume that your sample is large enough to be “representative” of your population.

• Create a new bootstrap sample by sampling with replacement from your original
sample, a number of times equal to your original sample size.

• Repeat the process to create many bootstrap samples. Compute the statistic of interest
on each and plot the results.

Nate Wells (Math 243: Stat Learning) The Bootstrap September 27th, 2021 5 / 14



The Bootstrap

The Resampling Approach

As an alternative to using the theoretical distribution, use simulation to approximate.
• The optimistic approach:

• Generate a large number of samples and compute the statistic of interest on each
• Plot and summarize the distribution of the statistic.
• The problem?

• The bootstrap approach:
• Assume that your sample is large enough to be “representative” of your population.
• Create a new bootstrap sample by sampling with replacement from your original

sample, a number of times equal to your original sample size.

• Repeat the process to create many bootstrap samples. Compute the statistic of interest
on each and plot the results.

Nate Wells (Math 243: Stat Learning) The Bootstrap September 27th, 2021 5 / 14



The Bootstrap

The Resampling Approach

As an alternative to using the theoretical distribution, use simulation to approximate.
• The optimistic approach:

• Generate a large number of samples and compute the statistic of interest on each
• Plot and summarize the distribution of the statistic.
• The problem?

• The bootstrap approach:
• Assume that your sample is large enough to be “representative” of your population.
• Create a new bootstrap sample by sampling with replacement from your original

sample, a number of times equal to your original sample size.
• Repeat the process to create many bootstrap samples. Compute the statistic of interest

on each and plot the results.

Nate Wells (Math 243: Stat Learning) The Bootstrap September 27th, 2021 5 / 14



The Bootstrap

Bootstrap Demo

Suppose Y = 1 + 2 · X1 + 3 · X2 + X1 · X2 + ε with ε ∼ N(0, 0.25).
set.seed(10101)
n<-100
X1<-runif(n, 0, 1)
X2 <- runif(n, 0, 1)
e<-rnorm(n, 0 ,.5)
Y<-1 + 2*X1 + 3*X2 + X1*X2+ e
d<-data.frame(X1, X2, Y)
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The Bootstrap

Bootstrap Demo

my_mod<-lm(Y ~ X1*X2, data = d)
summary(my_mod)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.447174 0.2100171 6.890742 5.807042e-10
## X1 1.317290 0.3803365 3.463485 7.982768e-04
## X2 2.405724 0.4102938 5.863417 6.404175e-08
## X1:X2 2.044325 0.7415455 2.756844 6.985948e-03

b3 <- my_mod$coefficients[4]
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The Bootstrap

The Simulation Approach

set.seed(234)
trials<-1000 #Number of simulations
n<-100 #Number points in each simulation
X1<-runif(n, 0, 1) # Generate random X1; same for all sims
X2 <- runif(n, 0, 1) # Generate random X1; same for all sims
slopes<-data.frame() #Create empty dataframe for the slopes

for (i in 1:trials){
sim_e<-rnorm(n, 0 ,.5)
sim_Y<-1 + 2*X1 + 3*X2 + X1*X2+ sim_e
sim_d<-data.frame(X1, X2, sim_Y)
sim_mod<-lm(sim_Y ~ X1*X2, data = sim_d)
slopes<-rbind( slopes,

data.frame(slope = summary(sim_mod)$coefficients[4,1]))
}

head(slopes)

## slope
## 1 0.5494089
## 2 1.4382129
## 3 0.9934332
## 4 0.7086642
## 5 -0.9140541
## 6 1.8136110
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The Bootstrap

Simulation Distribution
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slopes %>% summarize(mean_slope = mean(slope), sd_slope = sd(slope))

## mean_slope sd_slope
## 1 0.9895467 0.6620953
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The Bootstrap

The Bootstrap Approach

We have 1 sample:
head(d)

## X1 X2 Y
## 1 0.1903066 0.1056760 1.275277
## 2 0.9108393 0.6749109 4.690218
## 3 0.2277161 0.1748862 2.455955
## 4 0.8249905 0.7360649 5.719890
## 5 0.9155760 0.8434911 6.849461
## 6 0.5052083 0.7491072 4.589090

But we can create a bootstrap sample:
set.seed(135)
a_bootstrap_sample<-slice_sample(d, n = n, replace = T)

Duplicates?
common<-intersect(a_bootstrap_sample, d)
length(common$X1)

## [1] 66
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The Bootstrap

The Bootstrap Approach, cont’d

Now, we create 1000 bootstraps and calculate the slope of each
# Create a function to compute statistic from bootstrap sample
set.seed(929)
interaction_slope <- function(split){

x <- analysis(split)
boot_mod <-lm(Y ~ X1*X2 , data = x)
slope <- boot_mod$coefficients[4]
slope

}

# Use rsample to create bootstrap samples and apply function
library(rsample)
bt_resamples <- bootstraps(d, times = 1000)
bt_resamples$slope <- map_dbl(bt_resamples$splits, interaction_slope)
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The Bootstrap

Bootstrap Distribution
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bt_resamples %>% summarize(mean_slope = mean(slope), sd_slope = sd(slope))

## mean_slope sd_slope
## 1 2.026826 0.6849343
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The Bootstrap

Side-by-Side Comparison
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rbind(slopes, bt_resamples %>% select(slope)) %>%
cbind(method = rep(c("sim", "boot"), each = 1000)) %>%
group_by(method) %>% summarize(mean_slope = mean(slope), sd_slope = sd(slope),

q.025 = quantile(slope,.025), q.975 = quantile(slope, .975))

## # A tibble: 2 x 5
## method mean_slope sd_slope q.025 q.975
## <fct> <dbl> <dbl> <dbl> <dbl>
## 1 boot 2.03 0.685 0.620 3.34
## 2 sim 0.990 0.662 -0.286 2.27
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The Bootstrap

CV verus Bootstrapping

Both are computationally intensive methods that involve sampling from your data set to
learn more about your estimate/model.

Cross-validation: Often used for model assessment and model selection.
• Partition data into test and train
• Fit model to train, predict on test
• Iterate though all possible folds
• Compute aggregate measure of predictive ability

Bootstrapping: Often used for quantifying uncertainty.
• Draw a bootstrap sample of size n from your data with replacement.
• Compute estimate of interest
• Consider distribution of bootstrap estimates over many samples
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