Qualitative Predictors

Multiple Linear Regression: Extensions

Nate Wells

Math 243: Stat Learning

September 22nd, 2021

Qualitative Predictors

Non-linearity 000000000000

Outline

In today's class, we will...

- Create diagnostic plots for linear models
- Investigation several extensions to the linear model

Qualitative Predictors

Non-linearity 00000000000

Section 1

Diagnostic Plots

Nate Wells (Math 243: Stat Learning)

Qualitative Predictors

Common Problems

Most problems fall into 1 of 6 categories:

- **()** Non-linearity of relationship between predictors and response
- Orrelation of error terms
- **8** Non-constant variance in error
- Outliers
- 6 High-leverage points
- 6 Collinearity of predictors

Diagnostic	Plots
000000	0000

Qualitative Predictors

Non-linearity 00000000000

A Valid Model

Let's begin by creating a valid linear model to use as a baseline:

$$Y = 1 + 2X + \epsilon$$
 $\epsilon \sim N(0, 0.25)$

set.seed(700)
X <- runif(80, 0, 1)
e <- rnorm(80, 0, .25)
Y <- 1 + 2*X + e
my_data <- data.frame(X,Y)</pre>

```
ggplot(my_data, aes(x = X , y = Y)) + geom_point()
```


Diagnostic Plots		
00000000		

Linear Model

```
my_mod<-lm(Y ~ X, data = my_data)
my_mod$coefficients</pre>
```

(Intercept) X
1.025947 1.981375
summary(my_mod)\$r.sq

[1] 0.8275073

Qualitative Predictors

Non-linearity 00000000000

Model Diagnostics

Goal: Create graphics to assess how well data fits modeling assumptions.

Qualitative Predictors

Non-linearity 000000000000

Model Diagnostics

Goal: Create graphics to assess how well data fits modeling assumptions. The trade-off:

• The base R plot function can be used to quickly create all diagnostic plots necessary

Model Diagnostics

Goal: Create graphics to assess how well data fits modeling assumptions. The trade-off:

- The base R plot function can be used to quickly create all diagnostic plots necessary
 - But we then are restricted to plot aesthetics

Model Diagnostics

Goal: Create graphics to assess how well data fits modeling assumptions. The trade-off:

- The base R plot function can be used to quickly create all diagnostic plots necessary
 - But we then are restricted to plot aesthetics
- Alternatively, we can use the gglm function in the package of the same name, created and maintained by Reed alum, Grayson White.

Model Diagnostics

Goal: Create graphics to assess how well data fits modeling assumptions. The trade-off:

- The base R plot function can be used to quickly create all diagnostic plots necessary
 - But we then are restricted to plot aesthetics
- Alternatively, we can use the gglm function in the package of the same name, created and maintained by Reed alum, Grayson White.
 - Provides the same diagnostic plots as plot, but with ggplot2 appearances and customization.

Qualitative Predictors

Non-linearity 00000000000

Residual Plot

```
library(gglm)
ggplot(data = my_mod) +stat_fitted_resid()
```


What is represented along the horizontal axis? Why?

Qualitative Predictors

Non-linearity 000000000000

QQ Plot

```
library(gglm)
ggplot(data = my_mod) +stat_normal_qq()
```


What is represented along the horizontal and vertical axes? Why?

Qualitative Predictors

Non-linearity 000000000000

Scale-Location Plot

```
library(gglm)
ggplot(data = my_mod) +stat_scale_location()
```


What is represented along the vertical axes? Why?

Qualitative Predictors

Non-linearity 00000000000

Leverage Plot

```
library(gglm)
ggplot(data = my_mod) +stat_resid_leverage()
```


What is represented along the horizontal and vertical axes? Why?

Qualitative Predictors

Non-linearity 00000000000

Plot Quartet

library(gglm)
gglm(my_mod)

Qualitative Predictors

Non-linearity 00000000000

Section 2

Transformations

Nate Wells (Math 243: Stat Learning)

Diagnostic Plots	Transformations	
	000000000	

Example: Truck Prices

Can we use the age of a truck to predict what its price should be?

• Consider a random sample of 43 pickup trucks between 1994 and 2008.

Diagnostic Plots	Transformations	
	000000000	

Example: Truck Prices

Can we use the age of a truck to predict what its price should be?

• Consider a random sample of 43 pickup trucks between 1994 and 2008.

• Let's fit a linear model

Diagnostic Plots	Transformations	
	000000000	

Example: Truck Prices

Can we use the age of a truck to predict what its price should be?

• Consider a random sample of 43 pickup trucks between 1994 and 2008.

• Let's fit a linear model

Nate Wells (Math 243: Stat Learning)

Qualitative Predictors

Non-linearity 00000000000

Linear Model

```
truck_mod<-lm(price~year, data = pickups)</pre>
summarv(truck mod)
##
## Call:
## lm(formula = price ~ year, data = pickups)
##
## Residuals:
       Min
               10 Median
                                      Max
##
                               30
## -5468.7 -2202.9 -313.6 2096.0 7977.7
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -2278766.2 238325.7 -9.562 6.92e-12 ***
                  1143.4
                              119.1 9.597 6.24e-12 ***
## vear
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3080 on 40 degrees of freedom
## Multiple R-squared: 0.6972, Adjusted R-squared: 0.6896
## F-statistic: 92.1 on 1 and 40 DF, p-value: 6.238e-12
```

Qualitative Predictors

Non-linearity 000000000000

Diagnostics

- Residuals appear normally distributed.
- But data suggests a non-linear relationship
- Two observations appear influential.
- There is evidence of increasing variance in the residuals.

Diagnostic Plots	Transformations	
	0000000000	

If the diagnostic plots look bad, try to transform variables by applying functions.

Variables that span multiple orders of magnitude often benefit from a natural log transformation.

$$Y_t = \ln(Y)$$

Diagnostic Plots

Transformations

Qualitative Predictors

Non-linearity 00000000000

Log-transformed linear model

truck_log_mod <- lm(log_price ~ year, data = pickups)
summary(truck_log_mod)\$coef</pre>

Estimate Std. Error t value Pr(>|t|)
(Intercept) -258.9980504 26.12294226 -9.914582 2.471946e-12
year 0.1338934 0.01305865 10.253239 9.342855e-13

Nate Wells (Math 243: Stat Learning)

Multiple Linear Regression: Extensions

Poll: Interpretation

The slope coefficient in the log-linear model was 0.13. Which of the following interpretations are correct? Select all that apply

- **1** Increasing year by 1 increases price by approximately 0.13.
- **2** Increasing year by 1 produces a relative increase in price of approximately $e^{.13}$.
- **③** Increasing year by 1 increases the log-price by approximately 0.13.
- **\textcircled{0}** Increasing year by $\ln(1)$ increases price by approximately 0.13.

Qualitative Predictors

Non-linearity 00000000000

Model Accuracy

The R^2 and RSE values for the log and original models

##		model	r.sq	rse
##	1	log	0.7243830	0.337582
##	2	original	0.6972079	3079.839269

Model Accuracy

The R^2 and RSE values for the log and original models

##		model	r.sq	rse
##	1	log	0.7243830	0.337582
##	2	original	0.6972079	3079.839269

• The log model has slight improvement in \mathbb{R}^2 . And has massive improvement in RSE...

Model Accuracy

The R^2 and RSE values for the log and original models

##		model	r.sq	rse
##	1	log	0.7243830	0.337582
##	2	original	0.6972079	3079.839269

- The log model has slight improvement in R^2 . And has massive improvement in RSE...
 - Or does it? (Recall that RSE depends on the units of Y)

Model Accuracy

The R^2 and RSE values for the log and original models

##		model	r.sq	rse
##	1	log	0.7243830	0.337582
##	2	original	0.6972079	3079.839269

- The log model has slight improvement in R^2 . And has massive improvement in RSE...
 - Or does it? (Recall that RSE depends on the units of Y)
 - We need to transform predicted values from log model back into original scale

Model Accuracy

The R^2 and RSE values for the log and original models

##		model	r.sq	rse
##	1	log	0.7243830	0.337582
##	2	original	0.6972079	3079.839269

- The log model has slight improvement in R^2 . And has massive improvement in RSE...
 - Or does it? (Recall that RSE depends on the units of Y)
 - We need to transform predicted values from log model back into original scale

```
pred_price <- exp(truck_log_mod$fitted.values)
RSS <- sum((pickups$price - pred_price)^2)
RSE <- sqrt(RSS/(42-2))
RSE</pre>
```

[1] 2841.049

Diagnostic Plots

Transformations

Qualitative Predictors

Non-linearity 000000000000

Diagnostics

- The residuals from this model appear less normal
- But the quadratic trend is now less apparent.
- There are no influential points
- The variance has been stabilized

Diagnostic Plots	

Qualitative Predictors

Non-linearity 00000000000

Transformations summary

• If a linear model fit to the raw data leads to questionable residual plots, consider transformations.

Qualitative Predictors

Non-linearity 000000000000

- If a linear model fit to the raw data leads to questionable residual plots, consider transformations.
 - Count data and prices often benefit from transformations.

- If a linear model fit to the raw data leads to questionable residual plots, consider transformations.
 - Count data and prices often benefit from transformations.
 - The natural log and the square root are the most common, but you can use any transformation you like.

- If a linear model fit to the raw data leads to questionable residual plots, consider transformations.
 - Count data and prices often benefit from transformations.
 - The natural log and the square root are the most common, but you can use any transformation you like.
- Transformations may change model interpretations.

- If a linear model fit to the raw data leads to questionable residual plots, consider transformations.
 - Count data and prices often benefit from transformations.
 - The natural log and the square root are the most common, but you can use any transformation you like.
- Transformations may change model interpretations.
- Non-constant variance is a serious problem but it can sometimes be solved by transforming the response.

- If a linear model fit to the raw data leads to questionable residual plots, consider transformations.
 - Count data and prices often benefit from transformations.
 - The natural log and the square root are the most common, but you can use any transformation you like.
- Transformations may change model interpretations.
- Non-constant variance is a serious problem but it can sometimes be solved by transforming the response.
- Transformations can also fix non-linearity

Qualitative Predictors

Section 3

Qualitative Predictors

Nate Wells (Math 243: Stat Learning)

Diagnostic Plots	

Qualitative Predictors

Non-linearity 00000000000

Qualitative Predictors

Thus far, we have assumed all predictors are quantitative, but it would be nice to include qualitative predictors also

Qualitative Predictors

Non-linearity 00000000000

Qualitative Predictors

Thus far, we have assumed all predictors are quantitative, but it would be nice to include qualitative predictors also

• For binary categorical variables, we create a new *quantitative* variable by coding the first level as 0 and the second as 1.

Thus far, we have assumed all predictors are quantitative, but it would be nice to include qualitative predictors also

- For binary categorical variables, we create a new *quantitative* variable by coding the first level as 0 and the second as 1.
- We extend to variables with more than 2 levels by creating binary variables for all but 1 level.

Thus far, we have assumed all predictors are quantitative, but it would be nice to include qualitative predictors also

- For binary categorical variables, we create a new *quantitative* variable by coding the first level as 0 and the second as 1.
- We extend to variables with more than 2 levels by creating binary variables for all but 1 level.
- If X₁ is quantitative and X₂ is quantitative with 3 levels (A,B,C), the resulting model will be

$$\hat{Y} = f(X_1, X_2) = \beta_0 + \beta_1 X_1 + \beta_2 I_B + \beta_3 I_C = \begin{cases} \beta_0 + \beta_1 X_1, & \text{if } X_2 = A, \\ (\beta_0 + \beta_2) + \beta_1 X_1, & \text{if } X_2 = B, \\ (\beta_0 + \beta_3) + \beta_1 X_1, & \text{if } X_2 = C, \end{cases}$$

Note that all 3 regression lines have the same slope, but different intercept.

Qualitative Predictors

Non-linearity 00000000000

Scatterplot

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 I_1 + \hat{\beta}_3 I_2 = 2.48 + 1.14X_1 + 0.40I_1 + 1.20I_2$$

Diagnostic	Plots
000000	0000

Qualitative Predictors

Non-linearity 00000000000

The model in R

```
cat mod <- lm(data = mv data, Y ~ X 1 + X 2)
summary(cat_mod)
##
## Call:
## lm(formula = Y ~ X 1 + X 2, data = my data)
##
## Residuals:
       Min
                 10 Median
                                  ЗQ
                                          Max
##
## -0.77071 -0.19279 -0.00376 0.18634 0.69164
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 2.47917
                         0.06238 39.742 < 2e-16 ***
            1.14670 0.08730 13.135 < 2e-16 ***
## X 1
            0.40423 0.05881 6.873 1.69e-10 ***
## X_21
## X 22
            1.20196 0.05883 20.432 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2941 on 146 degrees of freedom
## Multiple R-squared: 0.8022, Adjusted R-squared: 0.7981
## F-statistic: 197.3 on 3 and 146 DF, p-value: < 2.2e-16
```

Qualitative Predictors

Non-linearity 000000000000

Poll 3: MLR Slope Interpretation

The slope on a (binary) categorical variable X_2 tells us (select all that apply)

- **a** How much we expect the response to change if we increase the value of X_2 from 0 to 1, while holding all else constant.
- **6** The difference in the average response between observations in the two categories.
- **c** The value of the response variable if X_2 equals 0.
- **(**) The distance between the two regression lines on the 2d scatterplot

Qualitative Predictors

Section 4

Non-linearity

Nate Wells (Math 243: Stat Learning)

Diagnostic	Plots

Qualitative Predictors

Non-linearity 0000000000

Interaction Effect

• In some cases, the effect of one variable on the response changes depending the values of another variable.

- In some cases, the effect of one variable on the response changes depending the values of another variable.
 - i.e. the effect of one variable is amplified in the presence of high levels of another variable

- In some cases, the effect of one variable on the response changes depending the values of another variable.
 - i.e. the effect of one variable is amplified in the presence of high levels of another variable
- Consider an investor's annual stock returns.
 - For fixed annual income, investing larger amounts of money will provide larger returns.
 - But the size of return per dollar invested changes depending on income. Why?

- In some cases, the effect of one variable on the response changes depending the values of another variable.
 - i.e. the effect of one variable is amplified in the presence of high levels of another variable
- Consider an investor's annual stock returns.
 - For fixed annual income, investing larger amounts of money will provide larger returns.
 - But the size of return per dollar invested changes depending on income. Why?
- To account for this, we include an **interaction** term in the model:

- In some cases, the effect of one variable on the response changes depending the values of another variable.
 - i.e. the effect of one variable is amplified in the presence of high levels of another variable
- Consider an investor's annual stock returns.
 - For fixed annual income, investing larger amounts of money will provide larger returns.
 - But the size of return per dollar invested changes depending on income. Why?
- To account for this, we include an **interaction** term in the model:

$$\begin{split} \mathbf{Y} &= \beta_0 + \beta_1 X_2 + \beta_2 X_2 + \epsilon \qquad \text{Old model} \\ \mathbf{Y} &= \beta_0 + \beta_1 X_2 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon \qquad \text{New model} \\ \mathbf{Y} &= \beta_0 + \tilde{\beta}_1 X_1 + \beta_2 X_2 + \epsilon \qquad \tilde{\beta}_1 = \beta_1 + \beta_3 X_2 \end{split}$$

Qualitative Predictors

Non-linearity 0000000000

Interaction Terms

$$\begin{split} \hat{Y} = & \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 I_1 + \hat{\beta}_3 I_2 + \beta_4 X_1 I_1 + \beta_5 X_1 I_2 \\ = & 2.02 + 2.02 X_1 + 0.99 I_1 + 1.95 I_2 - 1.10 X_1 I_1 - 1.43 X_1 I_2 \end{split}$$

Qualitative Predictors

Non-linearity 00000000000

The model in R

```
cat mod \leftarrow lm(data = my data, Y ~ X 1 + X 2 + X 1:X 2)
summarv(cat mod)
##
## Call:
## lm(formula = Y ~ X_1 + X_2 + X_1:X_2, data = my_data)
##
## Residuals:
       Min
                10 Median
##
                                  30
                                         Max
## -0.60973 -0.14215 -0.02252 0.14892 0.57340
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.01568
                        0.07557 26.672 < 2e-16 ***
## X 1
       2.01695 0.12661 15.930 < 2e-16 ***
## X 21 0.99310 0.10784 9.209 3.58e-16 ***
## X 22 1.95331 0.10290 18.983 < 2e-16 ***
## X 1:X 21 -1.10462 0.18068 -6.114 8.67e-09 ***
## X 1:X 22 -1.42584 0.17279 -8.252 9.02e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2413 on 144 degrees of freedom
## Multiple R-squared: 0.8686, Adjusted R-squared: 0.8641
## F-statistic: 190.5 on 5 and 144 DF. p-value: < 2.2e-16
```

Diagnostic Plots		Non-linearity
		000000000000000

Non-linear models

The emails data set consists of the number of emails I receive in a given hour over two days

Diagnostic Plots			Non-linearity
000000000	0000000000	00000	00000000000

Other Non-linear models

The emails data set consists of the number of emails I receive in a given hour over two days

Qualitative Predictors

Non-linearity 000000000000

Including non-linear terms

We can theorize a polynomial model for Y

$$Y = \beta_0 + \beta_1 \cdot X + \beta_2 \cdot X^2 + \dots + \beta_p \cdot X^p + \epsilon$$

Qualitative Predictors

Non-linearity 000000000000

Including non-linear terms

We can theorize a polynomial model for Y

$$Y = \beta_0 + \beta_1 \cdot X + \beta_2 \cdot X^2 + \dots + \beta_p \cdot X^p + \epsilon$$

• This model is non-linear in the sense that the regression curve is not a straight line. And that there is non-constant change in Y per unit change in X.

Qualitative Predictors

Non-linearity 000000000000

Including non-linear terms

We can theorize a polynomial model for Y

$$Y = \beta_0 + \beta_1 \cdot X + \beta_2 \cdot X^2 + \dots + \beta_p \cdot X^p + \epsilon$$

- This model is non-linear in the sense that the regression curve is not a straight line. And that there is non-constant change in Y per unit change in X.
- But it is linear in powers of the predictor.

Qualitative Predictors

Non-linearity 0000000000000

Poll: What model?

What polynomial degree seems most appropriate for the given data?

- **a** 1
- **b** 2
- 63
- **d** 4
- 6 More than 4

			Non-linearity
000000000	0000000000	00000	0000000000

Plotting non-linear regression curves

ggplot(emails, aes(x = hour, y = number)) +geom_point() +
geom_smooth(method = "lm", se = F, formula = y ~ poly(x, 4)) +
geom_smooth(method = "lm", se = F, color = "red")

Qualitative Predictors

Non-linearity 00000000000

Plotting non-linear regression curves II

Qualitative Predictors

Non-linearity 0000000000

Modeling with non-linear terms

```
emails_mod<-lm(number ~ poly(hour, degree = 4, raw= T), data = emails)
summary(emails_mod)</pre>
```

##

```
## Call:
## lm(formula = number ~ poly(hour, degree = 4, raw = T), data = emails)
##
## Residuals:
##
       Min
               10 Median
                               30
                                      Max
## -3 2317 -1 4687 -0 0364 1 4185 4 1590
##
## Coefficients.
##
                                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                   -1.551e+00 1.312e+00 -1.183
                                                                    0.243
## polv(hour, degree = 4, raw = T)1 2,458e+00 3,870e-01 6,352 1,03e-07 ***
## poly(hour, degree = 4, raw = T)2 -2.223e-01 3.328e-02 -6.680 3.37e-08 ***
## polv(hour, degree = 4, raw = T)3 7,177e-03 1.047e-03 6.855 1.86e-08 ***
## poly(hour, degree = 4, raw = T)4 -7.536e-05 1.082e-05 -6.967 1.28e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2,065 on 44 degrees of freedom
## Multiple R-squared: 0.5645, Adjusted R-squared: 0.5249
## F-statistic: 14.26 on 4 and 44 DF. p-value: 1.536e-07
```