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In today's class, we will. ..

® Create diagnostic plots for linear models

® |nvestigation several extensions to the linear model
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Common Problems

Most problems fall into 1 of 6 categories:
@ Non-linearity of relationship between predictors and response
® Correlation of error terms
® Non-constant variance in error
© Outliers
@ High-leverage points

@ Collinearity of predictors
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A Valid Model

Let's begin by creating a valid linear model to use as a baseline:

Y=1+2X+¢€ e ~ N(0,0.25)

set.seed(700)

X <- runif(80, 0, 1)

e <- rnorm(80, 0, .25)

Y <- 1+ 2%K + e

my_data <- data.frame(X,Y)

gegplot (my_data, aes( X, Y)) + geom_point ()
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Linear Model

my_mod<-1m(Y ~ X, my_data)
my_mod$coefficients

## (Intercept) X
## 1.025947 1.981375

summary (my_mod) $r.sq

## [1] 0.8275073
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Model Diagnostics

Goal: Create graphics to assess how well data fits modeling assumptions.
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Model Diagnostics

Goal: Create graphics to assess how well data fits modeling assumptions.

The trade-off:

® The base R plot function can be used to quickly create all diagnostic plots necessary
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Model Diagnostics

Goal: Create graphics to assess how well data fits modeling assumptions.

The trade-off:

® The base R plot function can be used to quickly create all diagnostic plots necessary

® But we then are restricted to plot aesthetics
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Model Diagnostics

Goal: Create graphics to assess how well data fits modeling assumptions.
The trade-off:
® The base R plot function can be used to quickly create all diagnostic plots necessary
® But we then are restricted to plot aesthetics

® Alternatively, we can use the gglm function in the package of the same name, created
and maintained by Reed alum, Grayson White.
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Model Diagnostics

Goal: Create graphics to assess how well data fits modeling assumptions.

The trade-off:

® The base R plot function can be used to quickly create all diagnostic plots necessary

® But we then are restricted to plot aesthetics

® Alternatively, we can use the gglm function in the package of the same name, created
and maintained by Reed alum, Grayson White.

® Provides the same diagnostic plots as plot, but with ggplot2 appearances and
customization.
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Residual Plot
library(gglm)
ggplot( my_mod) +stat_fitted_resid()

Residuals vs Fitted

Residuals

Fitted values

What is represented along the horizontal axis? Why?

What should we look for?
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QQ Plot

library(gglm)
ggplot( my_mod) +stat_normal_qq()
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What is represented along the horizontal and vertical axes? Why?

What should we look for?
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Scale-Location Plot

library(gglm)
geplot( my_mod) +stat_scale_location()

Scale-Location
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What is represented along the vertical axes? Why?

What should we look for?
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Leverage Plot

library(gglm)
geplot( my_mod) +stat_resid_leverage()

Residual vs. Leverage

Standardized Residuals

0.02 0.03 004 0.05
Leverage

What is represented along the horizontal and vertical axes? Why?

What should we look for?
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Plot Quartet

library(gglm)
gglm(my_mod)

Residuals vs Fitted Normal Q-Q
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Example: Truck Prices

Can we use the age of a truck to predict what its price should be?

® Consider a random sample of 43 pickup trucks between 1994 and 2008.
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Example: Truck Prices

Can we use the age of a truck to predict what its price should be?

® Consider a random sample of 43 pickup trucks between 1994 and 2008.
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® |et's fit a linear model
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Example: Truck Prices

Can we use the age of a truck to predict what its price should be?

® Consider a random sample of 43 pickup trucks between 1994 and 2008.
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® |et's fit a linear model
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near Model

truck_mod<-1lm(price~year, pickups)
summary (truck_mod)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Call:
Im(formula = price ~ year, data = pickups)
Residuals:

Min 1Q Median 3Q Max
-5468.7 -2202.9 -313.6 2096.0 7977.7
Coefficients:

Estimate Std. Error t value Pr(>|tl)

(Intercept) -2278766.2 238325.7 -9.562 6.92e-12 ***

year 1143.4 119.1  9.597 6.24e-12 *xx
Signif. codes: O 'x¥*' 0.001 '**x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3080 on 40 degrees of freedom

Multiple R-squared: 0.6972, Adjusted R-squared: 0.6896
F-statistic: 92.1 on 1 and 40 DF, p-value: 6.238e-12
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Diagnostics

Residuals vs Fitted 2 Normal Q-Q
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Residuals appear normally distributed.

But data suggests a non-linear relationship
® Two observations appear influential.

® There is evidence of increasing variance in the residuals.
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Transformations

If the diagnostic plots look bad, try to transform variables

pickups <- mutate(pickups, log pric

by applying functions.
e = log(price))
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Variables that span multiple orders of magnitude often benefit from a natural log transformation
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Log-transformed linear model
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truck_log_mod <- 1lm(log_price ~ year, pickups)
summary(truck_log_mod) $coef
## Estimate Std. Error t value Pr(>ltl)
## (Intercept) -258.9980504 26.12294226 -9.914582 2.471946e-12
## year 0.1338934 0.01305865 10.253239 9.342855e-13
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Poll: Interpretation

The slope coefficient in the log-linear model was 0.13. Which of the following
interpretations are correct? Select all that apply

@ Increasing year by 1 increases price by approximately 0.13.
@ Increasing year by 1 produces a relative increase in price of approximately e'3.
©® Increasing year by 1 increases the log-price by approximately 0.13.

0 Increasing year by In(1) increases price by approximately 0.13.
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Model Accuracy

The R? and RSE values for the log and original models

## model r.sq rse
## 1 log 0.7243830 0.337582
## 2 original 0.6972079 3079.839269
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Model Accuracy

The R? and RSE values for the log and original models

## model r.sq rse
## 1 log 0.7243830 0.337582
## 2 original 0.6972079 3079.839269

® The log model has slight improvement in R?. And has massive improvement in
RSE...
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Model Accuracy

The R? and RSE values for the log and original models

## model r.sq rse
## 1 log 0.7243830 0.337582
## 2 original 0.6972079 3079.839269

® The log model has slight improvement in R?. And has massive improvement in
RSE...

® Or does it? (Recall that RSE depends on the units of Y)
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Model Accuracy

The R? and RSE values for the log and original models

## model r.sq rse
## 1 log 0.7243830 0.337582
## 2 original 0.6972079 3079.839269

® The log model has slight improvement in R?. And has massive improvement in
RSE...

® Or does it? (Recall that RSE depends on the units of Y)

® We need to transform predicted values from log model back into original scale
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Model Accuracy

The R? and RSE values for the log and original models

## model r.sq rse
## 1 log 0.7243830 0.337582
## 2 original 0.6972079 3079.839269

® The log model has slight improvement in R?. And has massive improvement in
RSE...

® Or does it? (Recall that RSE depends on the units of Y)

® We need to transform predicted values from log model back into original scale

pred_price <- exp(truck_log_mod$fitted.values)
RSS <- sum((pickups$price - pred_price) 2)
RSE <- sqrt(RSS/(42-2))

RSE

## [1] 2841.049

Nate Wells (Math 243: Stat Learning) Multiple Linear Regression: Extensions September 22nd, 2021
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Diagnostics

Residuals vs Fitted Normal Q-Q
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® The residuals from this model appear less normal

But the quadratic trend is now less apparent.
® There are no influential points

® The variance has been stabilized
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Transformations summary

® |f a linear model fit to the raw data leads to questionable residual plots, consider
transformations.
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Transformations summary

® |f a linear model fit to the raw data leads to questionable residual plots, consider
transformations.

® Count data and prices often benefit from transformations.
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Transformations summary

® |f a linear model fit to the raw data leads to questionable residual plots, consider
transformations.

® Count data and prices often benefit from transformations.

® The natural log and the square root are the most common, but you can use any
transformation you like.
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Transformations summary

® |f a linear model fit to the raw data leads to questionable residual plots, consider
transformations.

® Count data and prices often benefit from transformations.

® The natural log and the square root are the most common, but you can use any
transformation you like.

® Transformations may change model interpretations.
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Transformations summary

® |f a linear model fit to the raw data leads to questionable residual plots, consider
transformations.
® Count data and prices often benefit from transformations.

® The natural log and the square root are the most common, but you can use any
transformation you like.

® Transformations may change model interpretations.

® Non-constant variance is a serious problem but it can sometimes be solved by
transforming the response.
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Transformations summary

If a linear model fit to the raw data leads to questionable residual plots, consider
transformations.

® Count data and prices often benefit from transformations.

® The natural log and the square root are the most common, but you can use any
transformation you like.

® Transformations may change model interpretations.

® Non-constant variance is a serious problem but it can sometimes be solved by
transforming the response.

® Transformations can also fix non-linearity
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Qualitative Predictors
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Qualitative Predictors

Thus far, we have assumed all predictors are quantitative, but it would be nice to include
qualitative predictors also
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Qualitative Predictors

Thus far, we have assumed all predictors are quantitative, but it would be nice to include
qualitative predictors also

® For binary categorical variables, we create a new quantitative variable by coding the
first level as 0 and the second as 1.
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Qualitative Predictors

Thus far, we have assumed all predictors are quantitative, but it would be nice to include
qualitative predictors also
® For binary categorical variables, we create a new quantitative variable by coding the
first level as 0 and the second as 1.
® \We extend to variables with more than 2 levels by creating binary variables for all but

1 level.

September 22nd, 2021 25/39
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Qualitative Predictors

Thus far, we have assumed all predictors are quantitative, but it would be nice to include
qualitative predictors also

® For binary categorical variables, we create a new quantitative variable by coding the
first level as 0 and the second as 1.

® \We extend to variables with more than 2 levels by creating binary variables for all but
1 level.
® |If Xy is quantitative and X> is quantitative with 3 levels (A,B,C), the resulting model
will be
,30 —+ ,61X1, if Xo = A,
Y = (X1, X2) = Bo + B1X1 + B2ls + Bslc = ¢ (Bo + B2) + B X1, if Xo = B,
(Bo + B3) + BuX1, if Xo=C,

Note that all 3 regression lines have the same slope, but different intercept.

September 22nd, 2021 25 /39
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Scatterplot

0.00 0.25 050 075 1.00

Y = Bo+ BiXi + Boly + B3 = 2.48 + 1.14X; + 0.40/; + 1.20h
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The model in R

cat_mod<- 1m( my_data, Y ~ X_1 + X_2)
summary (cat_mod)

##

## Call:

## 1lm(formula = Y ~ X_1 + X_2, data = my_data)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.77071 -0.19279 -0.00376 0.18634 0.69164

##

## Coefficients:

## Estimate Std. Error t value Pr(>|tl)

## (Intercept) 2.47917 0.06238 39.742 < 2e-16 *x*x
## X_1 1.14670 0.08730 13.135 < 2e-16 ***
## X_21 0.40423 0.05881 6.873 1.69e-10 *x*x
## X_22 1.20196 0.05883 20.432 < 2e-16 *x*x
## —-——

## Signif. codes: 0 '*xx' 0.001 'x*' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 0.2941 on 146 degrees of freedom
## Multiple R-squared: 0.8022, Adjusted R-squared: 0.7981
## F-statistic: 197.3 on 3 and 146 DF, p-value: < 2.2e-16
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Poll 3: MLR Slope Interpretation

The slope on a (binary) categorical variable X tells us (select all that apply)

® How much we expect the response to change if we increase the value of X, from 0 to
1, while holding all else constant.

O The difference in the average response between observations in the two categories.
® The value of the response variable if X, equals 0.

® The distance between the two regression lines on the 2d scatterplot

Nate Wells (Math 243: Stat Learning) Multiple Linear Regression: Extensions September 22nd, 2021 28 /39
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Non-linearity
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Interaction Effect

® |n some cases, the effect of one variable on the response changes depending the
values of another variable.
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Interaction Effect

® |n some cases, the effect of one variable on the response changes depending the
values of another variable.

® j.e. the effect of one variable is amplified in the presence of high levels of another variable
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Interaction Effect

® |n some cases, the effect of one variable on the response changes depending the
values of another variable.

® j.e. the effect of one variable is amplified in the presence of high levels of another variable
® Consider an investor's annual stock returns.
® For fixed annual income, investing larger amounts of money will provide larger returns.

® But the size of return per dollar invested changes depending on income. Why?
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Interaction Effect

® |n some cases, the effect of one variable on the response changes depending the
values of another variable.

® j.e. the effect of one variable is amplified in the presence of high levels of another variable

® Consider an investor's annual stock returns.
® For fixed annual income, investing larger amounts of money will provide larger returns.

® But the size of return per dollar invested changes depending on income. Why?

® To account for this, we include an interaction term in the model:
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Interaction Effect

® |n some cases, the effect of one variable on the response changes depending the
values of another variable.

® j.e. the effect of one variable is amplified in the presence of high levels of another variable
® Consider an investor's annual stock returns.

® For fixed annual income, investing larger amounts of money will provide larger returns.

® But the size of return per dollar invested changes depending on income. Why?

® To account for this, we include an interaction term in the model:

Y = B0+ B1Xo+ 2 Xo + € Old model
Y = fo+ S1Xo + B Xo + 3 X1 X2 + € New model
Y=50+5~1X1+52X2+6 512514—53)(2
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Interaction Terms

0.00 0.25 0.50 0.75 1.00

Y =Po + F1Xa + Poh + B3k + BaXih + Bs X1k
=2.02 +2.02X; +0.99/; + 1.95/ —1.10X1 — 1.43X1 ),
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The model in R

cat_mod<- 1m( my_data, Y ~ X_1 + X_2 + X_1:X_2)
summary (cat_mod)

##

## Call:

## Im(formula = Y ~ X_1 + X_2 + X_1:X_2, data = my_data)
##

## Residuals:

## Min 1Q Median 3Q Max

## -0.60973 -0.14215 -0.02252 0.14892 0.57340

##

## Coefficients:

## Estimate Std. Error t value Pr(>|tl)

## (Intercept) 2.01568 0.07557 26.672 < 2e-16 *x*x*
## X_1 2.01695 0.12661 15.930 < 2e-16 **x
## X_21 0.99310 0.10784  9.209 3.58e-16 **x*
## X_22 1.95331 0.10290 18.983 < 2e-16 ***
## X_1:X_21 -1.10462 0.18068 -6.114 8.67e-09 *x**
## X_1:X_22 -1.42584 0.17279 -8.252 9.02e-14 *x*x*
##H -—-

## Signif. codes: O 's**x' 0.001 '*x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 0.2413 on 144 degrees of freedom
## Multiple R-squared: 0.8686, Adjusted R-squared: 0.8641
## F-statistic: 190.5 on 5 and 144 DF, p-value: < 2.2e-16
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Non-linear models

The emails data set consists of the number of emails | receive in a given hour over two
days
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Other Non-linear models

The emails data set consists of the number of emails | receive in a given hour over two
days
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Including non-linear terms

We can theorize a polynomial model for Y

Y=B0+B X+B X+ +B X" +e
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Including non-linear terms

We can theorize a polynomial model for Y

Y=B0+B X+B X+ +B X" +e

® This model is non-linear in the sense that the regression curve is not a straight line.
And that there is non-constant change in Y per unit change in X.
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Including non-linear terms

We can theorize a polynomial model for Y

Y=B0+B X+B X+ +B X" +e

® This model is non-linear in the sense that the regression curve is not a straight line.
And that there is non-constant change in Y per unit change in X.

® But it is linear in powers of the predictor.

Nate Wells (Math 243: Stat Learning) Multiple Linear Regression: Extensions September 22nd, 2021 35/39



Non-linearity
0000000e000

Poll: What model?

What polynomial degree seems most appropriate for the given data?
o1
02
63
04
® More than 4
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Plotting non-linear regression curves

ggplot(emails, aes( hour, number)) +geom_point() +
geom_smooth( "lm", F, y ~ poly(x, 4 )) +
geom_smooth( "Im", F, "red")
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Plotting non-linear regression curves
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Modeling with non-linear terms

emails_mod<-lm(number ~ poly(hour, 4, 7, emails)
summary (emails_mod)

##

## Call:

## 1m(formula = number ~ poly(hour, degree = 4, raw = T), data = emails)

##

## Residuals:

## Min 1Q Median 3Q Max

## -3.2317 -1.4687 -0.0364 1.4185 4.1590

##

## Coefficients:

## Estimate Std. Error t value Pr(>|tl)

## (Intercept) -1.551e+00 1.312e+00 -1.183 0.243

## poly(hour, degree = 4, raw = T)1 2.458e+00 3.870e-01 6.352 1.03e-07 **x

## poly(hour, degree = 4, raw = T)2 -2.223e-01 3.328e-02 -6.680 3.37e-08 **x*

## poly(hour, degree = 4, raw = T)3 7.177e-03 1.047e-03  6.855 1.86e-08 ***
4 1

## poly(hour, degree = 4, raw = T)4 -7.536e-05 1.082¢-05 —6.967 1.28e-08 ##*
## -

## Signif. codes: 0 '%#*' 0.001 '*' 0.01 'sx' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 2.065 on 44 degrees of freedom

## Multiple R-squared: 0.5645, Adjusted R-squared: 0.5249

## F-statistic: 14.26 on 4 and 44 DF, p-value: 1.536e-07

*
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