### Multiple Linear Regression

#### Nate Wells

Math 243: Stat Learning

September 20th, 2021

### Outline

In today's class, we will...

- Quantify model accuracy for linear regression models (both simple and multiple)
- Troubleshoot potential problems with the linear model

# Section 1

## Assessing Model Accuracy

### How Strong is a Linear Model?

• In an linear model model,

$$Y = f(X) + \epsilon$$

So even if we could perfectly predict f using  $\hat{f},$  our model would still have non-zero MSE.

### How Strong is a Linear Model?

• In an linear model model,

$$Y = f(X) + \epsilon$$

So even if we could perfectly predict f using  $\hat{f}$ , our model would still have non-zero MSE.

• The **Residual Standard Error** (RSE) measures the average size of deviations of the response from the linear regression line. It is given by

$$\text{RSE} = \sqrt{\frac{1}{n-1-p}} \text{RSS} = \sqrt{\frac{1}{n-1-p}} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

### How Strong is a Linear Model?

• In an linear model model,

$$Y = f(X) + \epsilon$$

So even if we could perfectly predict f using  $\hat{f}$ , our model would still have non-zero MSE.

• The **Residual Standard Error** (RSE) measures the average size of deviations of the response from the linear regression line. It is given by

$$\text{RSE} = \sqrt{\frac{1}{n-1-p}} \text{RSS} = \sqrt{\frac{1}{n-1-p} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

It has the property that

$$E(RSE^2) = Var(\epsilon)$$

• Which means that  $E(\text{RSE}) \approx \text{sd}(\epsilon)$ 

### Five Flavors of Error

Which of the following are most likely to decrease as more and more predictors are added to a linear model (select all that apply)?

- test MSE
- **b** training MSE
- RSS
- d RSE
- Var( $\epsilon$ )



Large RSE indicates poor model fit, while small RSE indicates good fit. But how do we determine how small is **small**?



Large RSE indicates poor model fit, while small RSE indicates good fit. But how do we determine how small is  ${\bf small}?$ 

• The answer depends on the units of Y

# The $R^2$ statistic

Large RSE indicates poor model fit, while small RSE indicates good fit. But how do we determine how small is  ${\bf small}?$ 

• The answer depends on the units of Y

An alternative, standardized measure of goodness of fit is the  $R^2$  statistic:

$$R^2 = 1 - rac{\mathrm{RSS}}{\mathrm{TSS}}$$
 where  $\mathrm{TSS} = \sum_{i=1}^n (y_i - \bar{y})^2$ 

# The $R^2$ statistic

Large RSE indicates poor model fit, while small RSE indicates good fit. But how do we determine how small is  ${\bf small}?$ 

• The answer depends on the units of Y

An alternative, standardized measure of goodness of fit is the  $R^2$  statistic:

$$R^2 = 1 - rac{\mathrm{RSS}}{\mathrm{TSS}}$$
 where  $\mathrm{TSS} = \sum_{i=1}^n (y_i - \bar{y})^2$ 

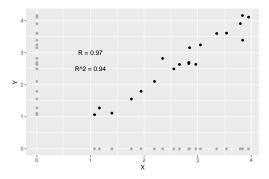
• The value of  $R^2$  is always between 0 and 1, and represents the percentage of variability in values of the response just due to variability in the predictors.

# Values of R<sup>2</sup>

If  $R^2 \approx 1$ : nearly all the variability in response is due to variability in the predictor variable.

# Values of R<sup>2</sup>

If  $R^2 \approx 1$ : nearly all the variability in response is due to variability in the predictor variable.

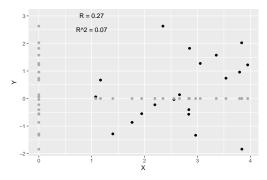


# Values of $R^{2}$

If  $R^2 \approx 0$ : almost none of the variability in response is due to variability in the predictor variable.

# Values of $R^2$

If  $R^2 \approx 0$ : almost none of the variability in response is due to variability in the predictor variable.



### Formulas for $R^2$ in terms of correlation

#### For SLR,

$$R^{2} = \left[\operatorname{Cor}(X,Y)\right]^{2} = \left[\frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}\right]^{2} = \left[\frac{\sum_{i=1}^{n}(x_{i}-\bar{x})(y_{i}-\bar{y})}{\sqrt{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}\sqrt{\sum_{i=1}^{n}(y_{i}-\bar{y})^{2}}}\right]^{2}$$

## Formulas for $R^2$ in terms of correlation

For SLR,

$$R^{2} = \left[\operatorname{Cor}(X, Y)\right]^{2} = \left[\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}\right]^{2} = \left[\frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}\sqrt{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}}\right]^{2}$$
  
For MLR,  
$$R^{2} = \left[\operatorname{Cor}(Y, \hat{Y})\right]^{2}$$

## Formulas for $R^2$ in terms of correlation

For SLR,

$$R^{2} = [\operatorname{Cor}(X, Y)]^{2} = \left[\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}\right]^{2} = \left[\frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}\sqrt{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}}\right]^{2}$$
  
For MLR,

$$R^{2} = \left[\operatorname{Cor}(Y, \hat{Y})\right]^{2}$$

We will usually use software to compute  $R^2$ .

#### Model Accuracy in R

```
mod credit<-lm(Balance ~ Income + Limit , data = Credit)</pre>
summarv(mod credit)
##
## Call:
## lm(formula = Balance ~ Income + Limit, data = Credit)
##
## Residuals:
##
      Min
               10 Median
                               30
                                      Max
## -232.79 -115.45 -48.20
                            53.36 549.77
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -385.17926 19.46480 -19.79 <2e-16 ***
## Income
               -7.66332 0.38507 -19.90 <2e-16 ***
                0.26432 0.00588 44.95 <2e-16 ***
## Limit
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 165.5 on 397 degrees of freedom
## Multiple R-squared: 0.8711, Adjusted R-squared: 0.8705
## F-statistic: 1342 on 2 and 397 DF, p-value: < 2.2e-16
```

#### Model Accuracy in R

```
mod credit<-lm(Balance ~ Income + Limit , data = Credit)</pre>
summarv(mod credit)
##
## Call:
## lm(formula = Balance ~ Income + Limit, data = Credit)
##
## Residuals:
               10 Median
##
      Min
                               30
                                      Max
## -232.79 -115.45 -48.20
                            53.36 549.77
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -385.17926 19.46480 -19.79 <2e-16 ***
               -7.66332 0.38507 -19.90 <2e-16 ***
## Income
                0.26432 0.00588 44.95 <2e-16 ***
## Limit
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 165.5 on 397 degrees of freedom
## Multiple R-squared: 0.8711, Adjusted R-squared: 0.8705
## F-statistic: 1342 on 2 and 397 DF, p-value: < 2.2e-16
```

We can use summary(mod)r.sq or summary(mod)sigma to access  $R^2$  and RSE directly.



• It turns out that the samples's  $R^2$  gives a **biased** estimate of the variability in the *population* explained by the model.

# Adjusted $R^2$

- It turns out that the samples's  $R^2$  gives a **biased** estimate of the variability in the *population* explained by the model.
- Instead, we use the adjusted R:

$$R_{
m adjusted}^2 = 1 - rac{
m RSS}{
m TSS} rac{n-1}{n-p-1}$$

# Adjusted $R^2$

- It turns out that the samples's  $R^2$  gives a **biased** estimate of the variability in the *population* explained by the model.
- Instead, we use the adjusted R:

$$R_{\text{adjusted}}^2 = 1 - \frac{\text{RSS}}{\text{TSS}} \frac{n-1}{n-p-1}$$

• This adjusted  $R^2$  is usually a bit smaller than  $R^2$ , and the difference decreases as n gets large.

# **Testing Significance**

Suppose we wish to test whether at least one predictor has a significant linear relationship with the response.

# Testing Significance

Suppose we wish to test whether at least one predictor has a significant linear relationship with the response.

Why would it be incorrect to conduct p many significant tests comparing each predictor to the response?

Goal: test whether any predictors are significant.

Goal: test whether any predictors are significant.

Hypotheses:

 $H_0: \beta_1 = \cdots = \beta_p = 0$   $H_a:$  at least one of  $\beta_i \neq 0$ 

Goal: test whether any predictors are significant.

Hypotheses:

 $H_0: \beta_1 = \cdots = \beta_p = 0$   $H_a:$  at least one of  $\beta_i \neq 0$ 

Test statistic:

$$F = \frac{(\text{TSS} - \text{RSS})/p}{\text{RSS}/(n - p - 1)}$$

Goal: test whether any predictors are significant.

Hypotheses:

 $H_0: \beta_1 = \cdots = \beta_p = 0$   $H_a:$  at least one of  $\beta_i \neq 0$ 

Test statistic:

$$F = \frac{(\text{TSS} - \text{RSS})/p}{\text{RSS}/(n - p - 1)}$$

Under the null hypothesis, F is approximately F-distributed with p, n - p - 1 parameters.

Goal: test whether any predictors are significant.

Hypotheses:

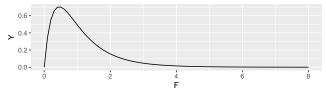
$$H_0: \beta_1 = \cdots = \beta_p = 0$$
  $H_a:$  at least one of  $\beta_i \neq 0$ 

Test statistic:

$$F = \frac{(\text{TSS} - \text{RSS})/p}{\text{RSS}/(n - p - 1)}$$

Under the null hypothesis, F is approximately F-distributed with p, n - p - 1 parameters.

Density for 4 predictors, 25 observations



Provided conditions for linear regression are met,

$$E\left[\frac{\mathrm{RSS}}{n-p-1}\right] = \sigma^2 = \mathrm{Var}(\epsilon)$$

Provided conditions for linear regression are met,

$$E\left[\frac{\mathrm{RSS}}{n-p-1}\right] = \sigma^2 = \mathrm{Var}(\epsilon)$$

And if  $H_0$  is also true, then

$$E\left[\frac{\mathrm{TSS}-\mathrm{RSS}}{p}\right] = \sigma^2 = \mathrm{Var}(\epsilon)$$

Provided conditions for linear regression are met,

$$E\left[\frac{\mathrm{RSS}}{n-p-1}\right] = \sigma^2 = \mathrm{Var}(\epsilon)$$

And if  $H_0$  is also true, then

$$E\left[\frac{\mathrm{TSS}-\mathrm{RSS}}{p}\right] = \sigma^2 = \mathrm{Var}(\epsilon)$$

Hence, if there is truly no relationship between any of the predictors and the response, then on average,

$$F = \frac{(\text{TSS} - \text{RSS})/p}{\text{RSS}/(n - p - 1)} = 1$$

Provided conditions for linear regression are met,

$$E\left[\frac{\mathrm{RSS}}{n-p-1}\right] = \sigma^2 = \mathrm{Var}(\epsilon)$$

And if  $H_0$  is also true, then

$$E\left[\frac{\mathrm{TSS}-\mathrm{RSS}}{p}\right] = \sigma^2 = \mathrm{Var}(\epsilon)$$

Hence, if there is truly no relationship between any of the predictors and the response, then on average,

$$F = \frac{(\mathrm{TSS} - \mathrm{RSS})/p}{\mathrm{RSS}/(n-p-1)} = 1$$

Moreover, it is unlikely that F is drastically larger than 1.

# Poll 2: TSS and RSS

Suppose we have a linear model with 25 observations and 4 predictors. Which of the following provides the best evidence of a relationship between the response and at least 1 of the predictors?

**a** 
$$TSS = 64$$
,  $RSS = 4$   
**b**  $TSS = 4$ ,  $RSS = 16$ 

**6** 
$$TSS = 4$$
,  $RSS = 10$   
**6**  $TSS = 48$ .  $RSS = 8$ 

$$TSS = 4$$
,  $RSS = 4$ 

# Improving Model Accuracy

What do we do when model accuracy is low (either high RSE or low  $R^2$ )?

What do we do when model accuracy is low (either high RSE or low  $R^2$ )?

• If some variables are strongly correlated, remove some redundant ones.

- If some variables are strongly correlated, remove some redundant ones.
  - This process is known as *backwards elimination*.
  - Start with the full model, remove the variable with highest *p*-value, and refit. Continue to do so until accuracy ceases to improve.

- If some variables are strongly correlated, remove some redundant ones.
  - This process is known as *backwards elimination*.
  - Start with the full model, remove the variable with highest *p*-value, and refit. Continue to do so until accuracy ceases to improve.
- If  $\epsilon$  is too large, add further variables.

- If some variables are strongly correlated, remove some redundant ones.
  - This process is known as *backwards elimination*.
  - Start with the full model, remove the variable with highest *p*-value, and refit. Continue to do so until accuracy ceases to improve.
- If  $\epsilon$  is too large, add further variables.
  - This process is known as *forward selection*.
  - Start with the null model, create p many SLR models (one for each predictor), and select the one with best accuracy. Repeat with this new model, creating p - 1 two predictor models (one for each remaining predictor). Continue until accuracy ceases to improve.

- If some variables are strongly correlated, remove some redundant ones.
  - This process is known as *backwards elimination*.
  - Start with the full model, remove the variable with highest *p*-value, and refit. Continue to do so until accuracy ceases to improve.
- If  $\epsilon$  is too large, add further variables.
  - This process is known as *forward selection*.
  - Start with the null model, create p many SLR models (one for each predictor), and select the one with best accuracy. Repeat with this new model, creating p - 1 two predictor models (one for each remaining predictor). Continue until accuracy ceases to improve.
- Is it possible that none of these models will have the best possible accuracy among all subsets of predictors?

- If some variables are strongly correlated, remove some redundant ones.
  - This process is known as *backwards elimination*.
  - Start with the full model, remove the variable with highest *p*-value, and refit. Continue to do so until accuracy ceases to improve.
- If  $\epsilon$  is too large, add further variables.
  - This process is known as *forward selection*.
  - Start with the null model, create p many SLR models (one for each predictor), and select the one with best accuracy. Repeat with this new model, creating p - 1 two predictor models (one for each remaining predictor). Continue until accuracy ceases to improve.
- Is it possible that none of these models will have the best possible accuracy among all subsets of predictors?
  - Yes. But we'll cover detailed model selection in Chapter 6.

# Section 2

# Problems with Linear Model

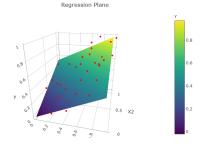
#### Overview

Given any data set with  $n \ge p$ , there is **always** a least squares regression equation

#### Overview

Given any data set with  $n \ge p$ , there is **always** a least squares regression equation

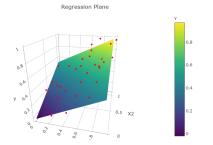
• i.e. a hyperplane in  $\mathbb{R}^{p+1}$  that minimizes the squared sum of residuals.



#### Overview

Given any data set with  $n \ge p$ , there is **always** a least squares regression equation

• i.e. a hyperplane in  $\mathbb{R}^{p+1}$  that minimizes the squared sum of residuals.



However, if we want to make *predictions* or perform *statistical inference* we need to make sure key assumptions of randomness are met.

#### **Common Problems**

Most problems fall into 1 of 6 categories:

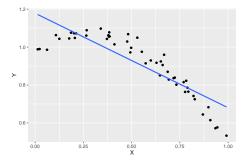
- **()** Non-linearity of relationship between predictors and response
- Orrelation of error terms
- **8** Non-constant variance in error
- Outliers
- 6 High-leverage points
- 6 Collinearity of predictors

# Non-linearity

In order to fit a linear model, we assume  $Y = F(X_1, \ldots, X_p) + \epsilon$ , where f is linear.

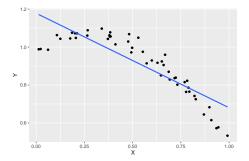
#### Non-linearity

In order to fit a linear model, we assume  $Y = F(X_1, \ldots, X_p) + \epsilon$ , where f is linear.



## Non-linearity

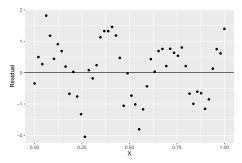
In order to fit a linear model, we assume  $Y = F(X_1, \ldots, X_p) + \epsilon$ , where f is linear.



But if this assumption is false, our model is likely to have high bias.

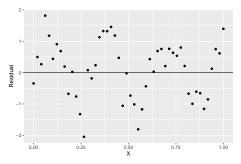
# Correlation of Errors

If errors are correlated, then knowing the values of one gives extra information about values of others.



# Correlation of Errors

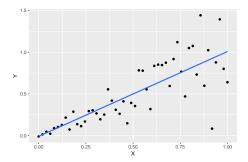
If errors are correlated, then knowing the values of one gives extra information about values of others.



Correlated errors lead to underestimates of residual standard error - Producing narrower confidence intervals and inflating test statistics

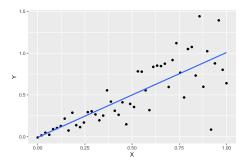
#### Non-constant variance

For prediction and inference with LM, we assume that all residuals have the same variance.



#### Non-constant variance

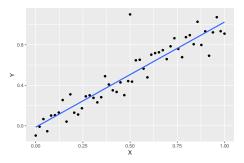
For prediction and inference with LM, we assume that all residuals have the same variance.



Least squares regression does not minimize RSS; requires more data for accurate predictions

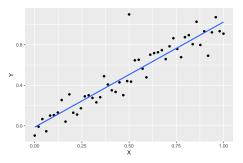
# Outliers

While outliers may occur even if model assumptions are met, they do influence accuracy estimates



# Outliers

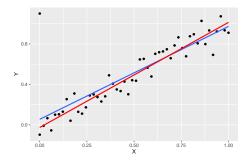
While outliers may occur even if model assumptions are met, they do influence accuracy estimates



Reduce  $R^2$  and increase RSE estimates

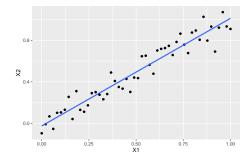
## High Leverage points

Outliers which have extreme values of predictors and response are called high-leverage points



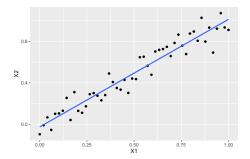
# Collinearity

Collinearity occurs when predictors are highly correlated



# Collinearity

Collinearity occurs when predictors are highly correlated



Collinearity produces high variance in estimates for  $\beta$ .

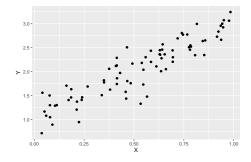
## A Valid Model

Let's begin by creating a valid linear model to use as a baseline:

$$Y = 1 + 2X + \epsilon$$
  $\epsilon \sim N(0, 0.25)$ 

set.seed(700)
X <- runif(80, 0, 1)
e <- rnorm(80, 0, .25)
Y <- 1 + 2\*X + e
my\_data <- data.frame(X,Y)</pre>

```
ggplot(my_data, aes(x = X , y = Y)) + geom_point()
```

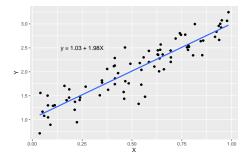


#### Linear Model

```
my_mod<-lm(Y ~ X, data = my_data)
beta_0 <- summary(my_mod)$coefficients[1]
beta_1 <- summary(my_mod)$coefficients[2]
c(beta_0, beta_1)
```

```
## [1] 1.025947 1.981375
```

```
ggplot(my_data, aes(x = X , y = Y)) + geom_point() + geom_smooth(method = "lm", se = F) +
annotate(geom= "text", x = .25, y = 2.5, label = "y = 1.03 + 1.98X")
```



Goal: Create graphics to assess how well data fits modeling assumptions.

Goal: Create graphics to assess how well data fits modeling assumptions. The trade-off:

• The base R plot function can be used to quickly create all diagnostic plots necessary

Goal: Create graphics to assess how well data fits modeling assumptions. The trade-off:

- The base R plot function can be used to quickly create all diagnostic plots necessary
  - But we then are restricted to plot aesthetics

Goal: Create graphics to assess how well data fits modeling assumptions. The trade-off:

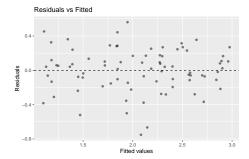
- The base R plot function can be used to quickly create all diagnostic plots necessary
  - But we then are restricted to plot aesthetics
- Alternatively, we can use the gglm function created and maintained by Reed Alum, Grayson White.

Goal: Create graphics to assess how well data fits modeling assumptions. The trade-off:

- The base R plot function can be used to quickly create all diagnostic plots necessary
  - But we then are restricted to plot aesthetics
- Alternatively, we can use the gglm function created and maintained by Reed Alum, Grayson White.
  - Provides the same diagnostic plots as plot, but with ggplot2 appearances and customization.

# **Residual Plot**

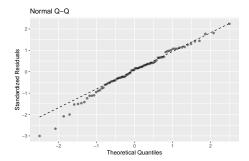
library(gglm)
ggplot(data = my\_mod) +stat\_fitted\_resid()



What is represented along the horizontal axis? Why?

# QQ Plot

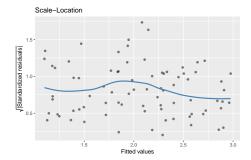
ggplot(data = my\_mod) +stat\_normal\_qq()



What is represented along the horizontal and vertical axes? Why?

# Scale-Location Plot

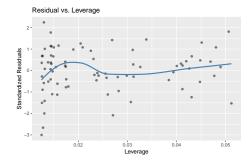
ggplot(data = my\_mod) +stat\_scale\_location()



What is represented along the vertical axes? Why?

# Leverage Plot

ggplot(data = my\_mod) +stat\_resid\_leverage()



What is represented along the horizontal and vertical axes? Why?

# Plot Quartet

gglm(my\_mod)

