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Assessing Model Accuracy Problems with Linear Model

Outline

In today’s class, we will. . .
• Quantify model accuracy for linear regression models (both simple and multiple)
• Troubleshoot potential problems with the linear model
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Assessing Model Accuracy Problems with Linear Model

Section 1

Assessing Model Accuracy
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Assessing Model Accuracy Problems with Linear Model

How Strong is a Linear Model?

• In an linear model model,
Y = f (X) + ε

So even if we could perfectly predict f using f̂ , our model would still have non-zero
MSE.

• The Residual Standard Error (RSE) measures the average size of deviations of the
response from the linear regression line. It is given by

RSE =
√

1
n − 1− p RSS =

√√√√ 1
n − 1− p

n∑
i=1

(yi − ŷi )2

• It has the property that

E(RSE2) = Var(ε)

• Which means that E(RSE) ≈ sd(ε)
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Assessing Model Accuracy Problems with Linear Model

Five Flavors of Error

Which of the following are most likely to decrease as more and more predictors are added
to a linear model (select all that apply)?

(a) test MSE
(b) training MSE
(c) RSS
(d) RSE
(e) Var(ε)
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Assessing Model Accuracy Problems with Linear Model

The R2 statistic

Large RSE indicates poor model fit, while small RSE indicates good fit. But how do we
determine how small is small?

• The answer depends on the units of Y

An alternative, standardized measure of goodness of fit is the R2 statistic:

R2 = 1− RSS
TSS where TSS =

n∑
i=1

(yi − ȳ)2

• The value of R2 is always between 0 and 1, and represents the percentage of
variability in values of the response just due to variability in the predictors.
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Assessing Model Accuracy Problems with Linear Model

Values of Rˆ2

If R2 ≈ 1: nearly all the variability in response is due to variability in the predictor variable.

R = 0.97

R^2 = 0.94
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Assessing Model Accuracy Problems with Linear Model

Values of R2

If R2 ≈ 0: almost none of the variability in response is due to variability in the predictor
variable.

R = 0.27

R^2 = 0.07
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Assessing Model Accuracy Problems with Linear Model

Formulas for R2 in terms of correlation

For SLR,

R2 = [Cor(X ,Y )]2 =

[
Cov(X ,Y )√

Var(X)Var(Y )

]2
=

[ ∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

]2

For MLR,
R2 =

[
Cor(Y , Ŷ )

]2
We will usually use software to compute R2.
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Assessing Model Accuracy Problems with Linear Model

Model Accuracy in R

mod_credit<-lm(Balance ~ Income + Limit , data = Credit)

summary(mod_credit)

##
## Call:
## lm(formula = Balance ~ Income + Limit, data = Credit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -232.79 -115.45 -48.20 53.36 549.77
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -385.17926 19.46480 -19.79 <2e-16 ***
## Income -7.66332 0.38507 -19.90 <2e-16 ***
## Limit 0.26432 0.00588 44.95 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 165.5 on 397 degrees of freedom
## Multiple R-squared: 0.8711, Adjusted R-squared: 0.8705
## F-statistic: 1342 on 2 and 397 DF, p-value: < 2.2e-16

We can use summary(mod)$r.sq or summary(mod)$sigma to access R2 and RSE directly.
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Assessing Model Accuracy Problems with Linear Model

Adjusted R2

• It turns out that the samples’s R2 gives a biased estimate of the variability in the
population explained by the model.

• Instead, we use the adjusted R:

R2
adjusted = 1 −

RSS
TSS

n − 1
n − p − 1

• This adjusted R2 is usually a bit smaller than R2, and the difference decreases as n
gets large.
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Assessing Model Accuracy Problems with Linear Model

Testing Significance

Suppose we wish to test whether at least one predictor has a significant linear relationship
with the response.

Why would it be incorrect to conduct p many significant tests comparing each predictor to
the response?
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Assessing Model Accuracy Problems with Linear Model

The Hypothesis Test

Goal: test whether any predictors are significant.

Hypotheses:
H0 : β1 = · · · = βp = 0 Ha : at least one of βi 6= 0

Test statistic:
F = (TSS− RSS)/p

RSS/(n − p − 1)

Under the null hypothesis, F is approximately F -distributed with p, n − p − 1 parameters.

0.0
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0.4

0.6

0 2 4 6 8
F

Y

Density for 4 predictors, 25 observations

Nate Wells (Math 243: Stat Learning) Multiple Linear Regression September 20th, 2021 13 / 33



Assessing Model Accuracy Problems with Linear Model

The Hypothesis Test

Goal: test whether any predictors are significant.

Hypotheses:
H0 : β1 = · · · = βp = 0 Ha : at least one of βi 6= 0

Test statistic:
F = (TSS− RSS)/p

RSS/(n − p − 1)

Under the null hypothesis, F is approximately F -distributed with p, n − p − 1 parameters.

0.0

0.2

0.4

0.6

0 2 4 6 8
F

Y

Density for 4 predictors, 25 observations

Nate Wells (Math 243: Stat Learning) Multiple Linear Regression September 20th, 2021 13 / 33



Assessing Model Accuracy Problems with Linear Model

The Hypothesis Test

Goal: test whether any predictors are significant.

Hypotheses:
H0 : β1 = · · · = βp = 0 Ha : at least one of βi 6= 0

Test statistic:
F = (TSS− RSS)/p

RSS/(n − p − 1)

Under the null hypothesis, F is approximately F -distributed with p, n − p − 1 parameters.

0.0

0.2

0.4

0.6

0 2 4 6 8
F

Y

Density for 4 predictors, 25 observations

Nate Wells (Math 243: Stat Learning) Multiple Linear Regression September 20th, 2021 13 / 33



Assessing Model Accuracy Problems with Linear Model

The Hypothesis Test

Goal: test whether any predictors are significant.

Hypotheses:
H0 : β1 = · · · = βp = 0 Ha : at least one of βi 6= 0

Test statistic:
F = (TSS− RSS)/p

RSS/(n − p − 1)

Under the null hypothesis, F is approximately F -distributed with p, n − p − 1 parameters.

0.0

0.2

0.4

0.6

0 2 4 6 8
F

Y

Density for 4 predictors, 25 observations

Nate Wells (Math 243: Stat Learning) Multiple Linear Regression September 20th, 2021 13 / 33



Assessing Model Accuracy Problems with Linear Model

The Hypothesis Test

Goal: test whether any predictors are significant.

Hypotheses:
H0 : β1 = · · · = βp = 0 Ha : at least one of βi 6= 0

Test statistic:
F = (TSS− RSS)/p

RSS/(n − p − 1)

Under the null hypothesis, F is approximately F -distributed with p, n − p − 1 parameters.

0.0

0.2

0.4

0.6

0 2 4 6 8
F

Y

Density for 4 predictors, 25 observations

Nate Wells (Math 243: Stat Learning) Multiple Linear Regression September 20th, 2021 13 / 33



Assessing Model Accuracy Problems with Linear Model

Typical Values of the F statistic

Provided conditions for linear regression are met,

E
[

RSS
n − p − 1

]
= σ2 = Var(ε)

And if H0 is also true, then

E
[

TSS− RSS
p

]
= σ2 = Var(ε)

Hence, if there is truly no relationship between any of the predictors and the response,
then on average,

F = (TSS− RSS)/p
RSS/(n − p − 1) = 1

Moreover, it is unlikely that F is drastically larger than 1.
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Assessing Model Accuracy Problems with Linear Model

Poll 2: TSS and RSS

Suppose we have a linear model with 25 observations and 4 predictors. Which of the
following provides the best evidence of a relationship between the response and at least 1
of the predictors?

(a) TSS = 64, RSS = 4
(b) TSS = 4, RSS = 16
(c) TSS = 48, RSS = 8
(d) TSS = 4, RSS = 4
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Assessing Model Accuracy Problems with Linear Model

Improving Model Accuracy

What do we do when model accuracy is low (either high RSE or low R2)?

• If some variables are strongly correlated, remove some redundant ones.
• This process is known as backwards elimination.
• Start with the full model, remove the variable with highest p-value, and refit. Continue

to do so until accuracy ceases to improve.

• If ε is too large, add further variables.
• This process is known as forward selection.
• Start with the null model, create p many SLR models (one for each predictor), and select

the one with best accuracy. Repeat with this new model, creating p − 1 two predictor
models (one for each remaining predictor). Continue until accuracy ceases to improve.

• Is it possible that none of these models will have the best possible accuracy among all
subsets of predictors?

• Yes. But we’ll cover detailed model selection in Chapter 6.
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Assessing Model Accuracy Problems with Linear Model

Section 2

Problems with Linear Model
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Assessing Model Accuracy Problems with Linear Model

Overview

Given any data set with n ≥ p, there is always a least squares regression equation

• i.e. a hyperplane in Rp+1 that minimizes the squared sum of residuals.

However, if we want to make predictions or perform statistical inference we need to make
sure key assumptions of randomness are met.
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Assessing Model Accuracy Problems with Linear Model

Common Problems

Most problems fall into 1 of 6 categories:

1 Non-linearity of relationship between predictors and response

2 Correlation of error terms

3 Non-constant variance in error

4 Outliers

5 High-leverage points

6 Collinearity of predictors
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Assessing Model Accuracy Problems with Linear Model

Non-linearity

In order to fit a linear model, we assume Y = F (X1, . . . ,Xp) + ε, where f is linear.
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But if this assumption is false, our model is likely to have high bias.
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Assessing Model Accuracy Problems with Linear Model

Correlation of Errors

If errors are correlated, then knowing the values of one gives extra information about
values of others.
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Correlated errors lead to underestimates of residual standard error - Producing narrower
confidence intervals and inflating test statistics
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Assessing Model Accuracy Problems with Linear Model

Non-constant variance

For prediction and inference with LM, we assume that all residuals have the same variance.
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predictions
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Assessing Model Accuracy Problems with Linear Model

Outliers

While outliers may occur even if model assumptions are met, they do influence accuracy
estimates
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Assessing Model Accuracy Problems with Linear Model

High Leverage points

Outliers which have extreme values of predictors and response are called high-leverage
points
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Assessing Model Accuracy Problems with Linear Model

Collinearity

Collinearity occurs when predictors are highly correlated
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Assessing Model Accuracy Problems with Linear Model

A Valid Model

Let’s begin by creating a valid linear model to use as a baseline:

Y = 1 + 2X + ε ε ∼ N(0, 0.25)
set.seed(700)
X <- runif(80, 0, 1)
e <- rnorm(80, 0, .25)
Y <- 1 + 2*X + e
my_data <- data.frame(X,Y)

ggplot(my_data, aes(x = X , y = Y)) + geom_point()
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Assessing Model Accuracy Problems with Linear Model

Linear Model

my_mod<-lm(Y ~ X, data = my_data)
beta_0 <- summary(my_mod)$coefficients[1]
beta_1 <- summary(my_mod)$coefficients[2]
c(beta_0, beta_1)

## [1] 1.025947 1.981375
ggplot(my_data, aes(x = X , y = Y)) + geom_point() + geom_smooth(method = "lm", se = F) +

annotate(geom= "text", x = .25, y = 2.5, label = "y = 1.03 + 1.98X")

y = 1.03 + 1.98X
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Assessing Model Accuracy Problems with Linear Model

Model Diagnostics

Goal: Create graphics to assess how well data fits modeling assumptions.

The trade-off:
• The base R plot function can be used to quickly create all diagnostic plots necessary

• But we then are restricted to plot aesthetics

• Alternatively, we can use the gglm function created and maintained by Reed Alum,
Grayson White.

• Provides the same diagnostic plots as plot, but with ggplot2 appearances and
customization.
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Assessing Model Accuracy Problems with Linear Model

Residual Plot

library(gglm)
ggplot(data = my_mod) +stat_fitted_resid()
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What is represented along the horizontal axis? Why?

What should we look for?
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Assessing Model Accuracy Problems with Linear Model

QQ Plot

ggplot(data = my_mod) +stat_normal_qq()
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Assessing Model Accuracy Problems with Linear Model

Scale-Location Plot

ggplot(data = my_mod) +stat_scale_location()
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Assessing Model Accuracy Problems with Linear Model

Leverage Plot

ggplot(data = my_mod) +stat_resid_leverage()
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Plot Quartet
gglm(my_mod)
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