Multiple Linear Regression

Nate Wells

Math 243: Stat Learning

September 14th, 2021

Nate Wells (Math 243: Stat Learning) Multiple Linear Regression September 14th, 2021



Outline

In today's class, we will. ..
® Generalize the simple regression model to include more than 1 predictor
® Quantify model accuracy for linear regression models (both simple and multiple)

® |mplement multiple regression in R
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Multiple Regression
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Many Simple Linear Regression Models?

We are often presented situations where several explanatory variables could be used to
predict values of a single response variable.
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We are often presented situations where several explanatory variables could be used to
predict values of a single response variable.

® Response: Home price
® Predictors: square feet, number of bedrooms, number of bathrooms
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We are often presented situations where several explanatory variables could be used to
predict values of a single response variable.

® Response: Home price
® Predictors: square feet, number of bedrooms, number of bathrooms

® Response: Professor age in photo
® Predictors: number of static lines, proportion gray hair, skin laxity

In each case, we could create simple linear regression models for each predictor variable.
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We are often presented situations where several explanatory variables could be used to
predict values of a single response variable.

® Response: Home price
® Predictors: square feet, number of bedrooms, number of bathrooms

® Response: Professor age in photo
® Predictors: number of static lines, proportion gray hair, skin laxity

In each case, we could create simple linear regression models for each predictor variable.

® But its not clear how to combine estimates from multiple models.
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In each case, we could create simple linear regression models for each predictor variable.
® But its not clear how to combine estimates from multiple models.

® The results may be misleading. Several explanatory variables may be highly correlated
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We are often presented situations where several explanatory variables could be used to
predict values of a single response variable.

® Response: Home price
® Predictors: square feet, number of bedrooms, number of bathrooms

® Response: Professor age in photo
® Predictors: number of static lines, proportion gray hair, skin laxity

In each case, we could create simple linear regression models for each predictor variable.
® But its not clear how to combine estimates from multiple models.
® The results may be misleading. Several explanatory variables may be highly correlated

® And even if none of the predictors have strong association with the response, it is
likely we will observe a significant predictor just due to chance.
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Many Simple Linear Regression Models?

We are often presented situations where several explanatory variables could be used to
predict values of a single response variable.

® Response: Home price
® Predictors: square feet, number of bedrooms, number of bathrooms

® Response: Professor age in photo
® Predictors: number of static lines, proportion gray hair, skin laxity

In each case, we could create simple linear regression models for each predictor variable.
® But its not clear how to combine estimates from multiple models.
® The results may be misleading. Several explanatory variables may be highly correlated.

® And even if none of the predictors have strong association with the response, it is
likely we will observe a significant predictor just due to chance.

Could we get better predictive power by including all explanatory variables in the same
model?
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Multiple Regression Model

In a simple linear regression model (SLR), we express the response variable Y as a linear
function f of one predictor variable X:

Y =f(X)+e

and estimate f using

Y = #(X) = fo+ buX
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Multiple Regression Model

In a simple linear regression model (SLR), we express the response variable Y as a linear
function f of one predictor variable X:

Y =f(X)+e

and estimate f using

Y = #(X) = fo+ buX

In a multiple linear regression model (MLR), we express the response variable Y as a
linear combination f of p predictors X1, X, ..., Xp:

Y =Ff(X,...,Xp) €
and estimate f using

V=F(X,. ., Xp) = Bo+ BiXa+ BoXo+ o+ BoXo
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Multiple Regression Model

In a simple linear regression model (SLR), we express the response variable Y as a linear
function f of one predictor variable X:

Y =f(X)+e

and estimate f using

Y = #(X) = fo+ buX

In a multiple linear regression model (MLR), we express the response variable Y as a
linear combination f of p predictors X1, X, ..., Xp:

Y =Ff(X,...,Xp) €
and estimate f using
V=F(X,. ., Xp) = Bo+ BiXa+ BoXo+ o+ BoXo

® |n the MLR model, we allow predictors to either be quantitative or binary categorical
(i.e taking values 0 or 1 corresponding to failure or success)
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Finding Parameters

To create an SLR model, we found the equation of a line that minimizes RSS, where
RSS = Z(y" —9) = Z(Yi — o — pixt),
i=1

i=1
which has the solution

Yo xi = X)yi —¥)
Do —X)?

b=
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To create an SLR model, we found the equation of a line that minimizes RSS, where
n n

RSS = Z(yi — }7;)2 = Z(}/i — o — 31X1)7

i=1 i=1
which has the solution

Yo =)y —7)
2 =x)
And in R, we computed the coefficients using

my_mod<-1m(Y ~ X, data = my_data)
summary (my_mod)

b=

To create an MLR model. ..
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Finding Parameters

To create an SLR model, we found the equation of a line that minimizes RSS, where
n n

RSS = Z(yi — }7;)2 = Z(}/i — o — 31X1)7

i=1 i=1
which has the solution

Yo =)y —7)
2 =x)
And in R, we computed the coefficients using

my_mod<-1m(Y ~ X, data = my_data)
summary (my_mod)

b=

To create an MLR model. ..

we do the exact same thing!
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Finding Parameters MLR

To create a MLR model, we find the equation of a hyperplane in RP*! that minimizes
RSS, where

RSS = Z(Yi - }7:‘)2 = Z(yi - 30 - lel - Bpxp)Za
i=1 i=1
which has the solution
A Ty\—1y T
=X X)Xy
e Bis the (p + 1)-vector of coefficient estimates (Bo, B, ..., Bp)
® y is the n-vector of observed responses

® X is the (n x p + 1)-matrix (or dataframe) consisting of n rows of observations on p
predictors (plus a column of 1's).
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Finding Parameters MLR

To create a MLR model, we find the equation of a hyperplane in RP*! that minimizes
RSS, where

RSS = Z(Yi - }7:‘)2 = Z(yi - 30 - lel - Bpxp)Za
i=1 i=1
which has the solution A
,6 _ (XTX)—IXTy

B is the (p + 1)-vector of coefficient estimates (Bo, B, ..., Bp)
® y is the n-vector of observed responses

® X is the (n x p + 1)-matrix (or dataframe) consisting of n rows of observations on p
predictors (plus a column of 1's).

If we have 2 predictors, the equation describes a plane in 3D space.
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Finding Parameters MLR

To create a MLR model, we find the equation of a hyperplane in RP*! that minimizes
RSS, where

RSS = Z(Yi - }7:‘)2 = Z(yi - 30 - lel - Bpxp)Za
i=1 i=1
which has the solution
A Ty\—1y T
=X X)Xy
e Bis the (p + 1)-vector of coefficient estimates (Bo, B, ..., Bp)
® y is the n-vector of observed responses

® X is the (n x p + 1)-matrix (or dataframe) consisting of n rows of observations on p
predictors (plus a column of 1's).

® |f we have 2 predictors, the equation describes a plane in 3D space.

We even use the exact same R code to fit the linear model:
my_mod<-Im(Y ~ X1 + X2 + ... + Xp, data = my_data)
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The Plane of Best Fit

Regression Plane

Regression Plane

An interactive graphic available under topics for Wednesday 9-15 on schedule page of

course website
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Example: Credit Card Debt

The Credit dataset in the ISLR package contains (fabricated) credit card debt and other
financial and demographic information for 400 individuals.
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Goal: Build a model that allows us to predict credit debt given financial and demographic
information
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Example: Credit Card Debt

The Credit dataset in the ISLR package contains (fabricated) credit card debt and other
financial and demographic information for 400 individuals.

Goal: Build a model that allows us to predict credit debt given financial and demographic
information

We first consider balance as a function of credit_limit and income

Debt and Limit

et ()

Cradttim n5)

R=0.86  Debt = —292.8 4+ 0.17 - Limit
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Example: Credit Card Debt

The Credit dataset in the ISLR package contains (fabricated) credit card debt and other
financial and demographic information for 400 individuals.

Goal: Build a model that allows us to predict credit debt given financial and demographic
information

We first consider balance as a function of credit_limit and income

Debt and Limit Debtand Income

Cradttim n5) Income (n$1000)

R=0.86  Debt = —292.8 4+ 0.17 - Limit R=10.46  Debt = 246.51 + 6.048 - Income
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Example: Credit Card Debt

The Credit dataset in the ISLR package contains (fabricated) credit card debt and other
financial and demographic information for 400 individuals.

Goal: Build a model that allows us to predict credit debt given financial and demographic
information

We first consider balance as a function of credit_limit and income

Debt and Limit Debtand Income

Cradttim n5) Income (n$1000)

R=0.86  Debt = —292.8+0.17 - Limit R=0.46  Debt = 246.51 + 6.048 - Income
Both variables have some explanatory power for Debt.
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The Regression Plane

How do Limit and Income together explain Debt?
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The Regression Plane

How do Limit and Income together explain Debt?
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Multiple Regression for Debt

Let's find the MLR model

mod<-1m(Balance ~ Limit + Income, data = Credit)

Nate Wells (Math 243: Stat Learning)
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Multiple Regression for Debt

Let's find the MLR model

mod<-1m(Balance ~ Limit + Income, data = Credit)

And investigate the regression table

summary (mod) $coefficients

## Estimate
## (Intercept) -385.1792604
## Limit 0.2643216
## Income -7.6633230

Nate Wells (Math 243: Stat Learning)

Std. Error t value Pr(>|tl)
19.464801525 -19.78850 3.878764e-61
0.005879729 44.95471 7.717386e-158
0.385072058 -19.90101 1.260933e-61
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Multiple Regression for Debt

Let's find the MLR model

mod<-1m(Balance ~ Limit + Income, data = Credit)

And investigate the regression table

summary (mod) $coefficients

## Estimate
## (Intercept) -385.1792604
## Limit 0.2643216
## Income -7.6633230

Std. Error t value Pr(>|tl)
19.464801525 -19.78850 3.878764e-61
0.005879729 44.95471 7.717386e-158
0.385072058 -19.90101 1.260933e-61

Which gives us the regression equation:

Debt = —385.179 + 0.264 - Limit — 0.7663 - Income
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Multiple Regression for Debt

Let's find the MLR model

mod<-1m(Balance ~ Limit + Income, data = Credit)

And investigate the regression table

summary (mod) $coefficients

## Estimate Std. Error t value PrC>ltl)
## (Intercept) -385.1792604 19.464801525 -19.78850 3.878764e-61
## Limit 0.2643216 0.005879729 44.95471 7.717386e-158
## Income -7.6633230 0.385072058 -19.90101 1.260933e-61

Which gives us the regression equation:

Debt = —385.179 + 0.264 - Limit — 0.7663 - Income

® For fixed value of Income, increasing Credit Limit by $1 increases debt by an average
of $0.264.
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Multiple Regression for Debt

Let's find the MLR model

mod<-1m(Balance ~ Limit + Income, data = Credit)

And investigate the regression table

summary (mod) $coefficients

## Estimate Std. Error t value PrC>ltl)
## (Intercept) -385.1792604 19.464801525 -19.78850 3.878764e-61
## Limit 0.2643216 0.005879729 44.95471 7.717386e-158
## Income -7.6633230 0.385072058 -19.90101 1.260933e-61

Which gives us the regression equation:

Débt = —385.179 + 0.264 - Limit — 0.7663 - Income
® For fixed value of Income, increasing Credit Limit by $1 increases debt by an average
of $0.264.

® While for fixed value of Limit, increasing Income by $1000 decreases debt by an
average of $7.66.
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Comparing MLR and SLR

Wait. . .
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® The SLR for Debt and Income was

Debt = 246.51 + 6.048 - Income
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Comparing MLR and SLR

Wait. . .
® The SLR for Debt and Income was
Debt = 246.51 + 6.048 - Income
® That is, increasing Income by $1000 INCREASED debt by $6.05.
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Comparing MLR and SLR

Wait. . .

® The SLR for Debt and Income was

Debt = 246.51 + 6.048 - Income
® That is, increasing Income by $1000 INCREASED debt by $6.05.
® But the MLR is

Debt = —385.179 + 0.264 - Limit — 0.7663 - Income

® Not only has MLR given us a new rate of change, but it's completely switched the
direction!
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Comparing MLR and SLR

Wait. . .
® The SLR for Debt and Income was
Debt = 246.51 + 6.048 - Income
® That is, increasing Income by $1000 INCREASED debt by $6.05.
® But the MLR is

Debt = —385.179 + 0.264 - Limit — 0.7663 - Income

Not only has MLR given us a new rate of change, but it's completely switched the
direction!

® How is this possible?
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Income and Credit Limit

Let's consider the relationship between income and credit limit
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Income and Credit Limit

Let's consider the relationship between income and credit limit

Income and Credit Limit

V=239 + 52X o

Income (in $1000)
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Let's consider the relationship between income and credit limit

Income and Credit Limit

V=239 + 52X o

Income (in $1000)

In a vacuum, as income increases, so too does credit limit.
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Income and Credit Limit

Let's consider the relationship between income and credit limit

Income and Credit Limit

V=239 + 52X

Income (n $1000)
In a vacuum, as income increases, so too does credit limit.

® So in the SLR model, when we assess the change in Debt due to increase in Income,
we are implicitly also increasing Credit Limit
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Income and Credit Limit

V=239 + 52X

Income (n $1000)
In a vacuum, as income increases, so too does credit limit.

® So in the SLR model, when we assess the change in Debt due to increase in Income,
we are implicitly also increasing Credit Limit

® We could say Credit Limit is a confounding variable in the SLR model.
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V=239 + 52X

Income (n $1000)
In a vacuum, as income increases, so too does credit limit.
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we are implicitly also increasing Credit Limit

® We could say Credit Limit is a confounding variable in the SLR model.
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The Regression Plane Revisited

In the MLR model, we may freely change both Income and Credit Limit
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The Regression Plane Revisited

In the MLR model, we may freely change both Income and Credit Limit

® This corresponds to the fact that there is a unique Debt point on the regression plane
for each pair of Income / Credit Limit values.
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The Regression Plane Revisited

In the MLR model, we may freely change both Income and Credit Limit

® This corresponds to the fact that there is a unique Debt point on the regression plane
for each pair of Income / Credit Limit values.
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Debt vs. Income Revisited

We can lump Credit Limits into 4 brackets (low, med-low, med-high, high) to create a
categorical variable and analyze the SLR for Debt and Income for each level of Credit Limit
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Debt vs. Income Revisited

We can lump Credit Limits into 4 brackets (low, med-low, med-high, high) to create a
categorical variable and analyze the SLR for Debt and Income for each level of Credit Limit
Debt and Income
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credit_bracket
1000 high

= med-high

Debt (in $)

- med-low

low

500

100
Income (in $1000)
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Section 2

Assessing Model Accuracy
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How Strong is a Linear Model?

® |n an linear model model,
Y=Ff(X)+e

So even if we could perfectly predict f using #, our model would still have non-zero
MSE.

Nate Wells (Math 243: Stat Learning) Multiple Linear Regression September 14th, 2021



Assessing Model Accuracy
0e000000000000

How Strong is a Linear Model?

® |n an linear model model,
Y=Ff(X)+e

So even if we could perfectly predict f using #, our model would still have non-zero
MSE.

® The Residual Standard Error (RSE) measures the average size of deviations of the
response from the linear regression line. It is given by
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How Strong is a Linear Model?

® |n an linear model model,

Y =Ff(X)+e

So even if we could perfectly predict f using #, our model would still have non-zero
MSE.

® The Residual Standard Error (RSE) measures the average size of deviations of the
response from the linear regression line. It is given by

— 1 — 1 - . — )2
RSE =/ ——RSS = n—l—p;(y' 91)

® |t has the property that

E(RSE?) = Var(e)

® Which means that E(RSE) = sd(e)
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Five Flavors of Error

Which of the following are most likely to decrease as more and more predictors are added
to a linear model (select all that apply)?

® test MSE

0O training MSE
® RSS

® RSE

0 Var(e)

September 14th, 2021 18 /29
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The R? statistic

Large RSE indicates poor model fit, while small RSE indicates good fit. But how do we
determine how small is small?
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The R? statistic

Large RSE indicates poor model fit, while small RSE indicates good fit. But how do we
determine how small is small?

® The answer depends on the units of Y
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The R? statistic

Large RSE indicates poor model fit, while small RSE indicates good fit. But how do we
determine how small is small?

® The answer depends on the units of Y

An alternative, standardized measure of goodness of fit is the R? statistic:

n

RSS _ Y
TS where TSS = Z(y, y)

i=1

RP=1-
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The R? statistic

Large RSE indicates poor model fit, while small RSE indicates good fit. But how do we
determine how small is small?

® The answer depends on the units of Y

An alternative, standardized measure of goodness of fit is the R? statistic:

n

RSS _ Y
TS where TSS = Z(y, y)

i=1

RP=1-

® The value of R? is always between 0 and 1, and represents the percentage of
variability in values of the response just due to variability in the predictors.
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Values of R"2

If R? ~ 1: nearly all the variability in response is due to variability in the predictor variable.
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Values of R"2

If R? ~ 1: nearly all the variability in response is due to variability in the predictor variable.

R=097

R2=094
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Values of R?

If R? ~ 0: almost none of the variability in response is due to variability in the predictor
variable.
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Values of R?

If R? ~ 0: almost none of the variability in response is due to variability in the predictor
variable.

R2=007
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Formulas for R? in terms of correlation

For SLR,

R?> = [Cor(X, Y)]* =

C(XH] _ [ S o= )i - )
VaOOVa) | |Vl RS0 97
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Formulas for R? in terms of correlation

For SLR,

Yo (xi =)y —¥)
Voo (i = 22> (vi — 7)?

R? = [Cor(X, Y)]? = COV(XY)] _

Var(X)Var(Y)

For MLR,
R? = [Cor(Y, ¥)]’
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Formulas for R? in terms of correlation

For SLR,

Yo (xi =)y —¥)
Voo (i = 22> (vi — 7)?

R?> = [Cor(X, Y)]* =

Cov(X,Y) ’ _
Var(X)Var(Y) a

For MLR,
R? = [Cor(Y, ¥)]’

We will usually use software to compute R2.
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Model Accuracy in R

mod_credit<-1lm(Balance ~ Income + Limit , data = Credit)

summary (mod_credit)

##

## Call:

## lm(formula = Balance ~ Income + Limit, data = Credit)
##

## Residuals:

## Min 1Q Median 3Q Max

## -232.79 -115.45 -48.20 53.36 549.77

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t])

## (Intercept) -385.17926 19.46480 -19.79 <2e-16 ***
## Income -7.66332 0.38507 -19.90 <2e-16 ***
## Limit 0.26432 0.00588 44 .95 <2e-16 ***
## ——

## Signif. codes: O '*¥x' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 165.5 on 397 degrees of freedom
## Multiple R-squared: 0.8711, Adjusted R-squared: 0.8705
## F-statistic: 1342 on 2 and 397 DF, p-value: < 2.2e-16
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Model Accuracy in R

mod_credit<-1lm(Balance ~ Income + Limit , data = Credit)

summary (mod_credit)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Call:
1lm(formula = Balance ~ Income + Limit, data = Credit)
Residuals:

Min 1Q Median 3Q Max
-232.79 -115.45 -48.20 53.36 549.77
Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) -385.17926 19.46480 -19.79 <2e-16 ***

Income -7.66332 0.38507 -19.90 <2e-16 *xx

Limit 0.26432 0.00588  44.95 <2e-16 *xx

Signif. codes: O 'x¥*' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Residual standard error: 165.5 on 397 degrees of freedom

Multiple R-squared: 0.8711, Adjusted R-squared: 0.8705
F-statistic: 1342 on 2 and 397 DF, p-value: < 2.2e-16

We can use summary (mod)$r.sq or summary (mod)$sigma to access R?> and RSE directly.
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Adjusted R?

® [t turns out that the samples's R? gives a biased estimate of the variability in the
population explained by the model.
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Adjusted R?

® [t turns out that the samples's R? gives a biased estimate of the variability in the
population explained by the model.

® |nstead, we use the adjusted R:

R? RSS n-1
TSSn—p—1

adjusted =1
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Adjusted R?

® [t turns out that the samples's R? gives a biased estimate of the variability in the
population explained by the model.
® |nstead, we use the adjusted R:
R? _ RSS n-1
adjusted — © TSSn—p—1

® This adjusted R? is usually a bit smaller than R?, and the difference decreases as n
gets large.
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Testing Significance

Suppose we wish to test whether at least one predictor has a significant linear relationship
with the response.
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Testing Significance

Suppose we wish to test whether at least one predictor has a significant linear relationship
with the response.
Why would it be incorrect to conduct p many significant tests comparing each predictor to

the response?
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The Hypothesis Test

Goal: test whether any predictors are significant.
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The Hypothesis Test

Goal: test whether any predictors are significant.

Hypotheses:
Ho:Bi=--=8,=0 H, : at least one of 8; # 0
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The Hypothesis Test

Goal: test whether any predictors are significant.
Hypotheses:

Ho:Bi=--=8,=0 H, : at least one of 8; # 0
Test statistic:

_ (TSS—RSS)/p
T RSS/(n—p—1)
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The Hypothesis Test

Goal: test whether any predictors are significant.

Hypotheses:
Ho:Bi=--=8,=0 H, : at least one of 8; # 0

Test statistic:
_ (TSS—RSS)/p

F= RSS/(n—p—1)

Under the null hypothesis, F is approximately F-distributed with p,n — p — 1 parameters.
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The Hypothesis Test

Goal: test whether any predictors are significant.

Hypotheses:
Ho:Bi=--=8,=0 H, : at least one of 8; # 0

Test statistic:
_ (TSS—RSS)/p

F= RSS/(n—p—1)

Under the null hypothesis, F is approximately F-distributed with p,n — p — 1 parameters.

Density for 4 predictors, 25 observations
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Typical Values of the F statistic

Provided conditions for linear regression are met,

f— 2_
E pP— = 0" = Var(e)
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Typical Values of the F statistic

Provided conditions for linear regression are met,
E {n_RpSS_l] = o” = Var(e)
And if Hp is also true, then

£ {Tss — RSS

) } = o° = Var(e)
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Typical Values of the F statistic

Provided conditions for linear regression are met,

RSS | o
E |:W:| =0 = Var(e)

And if Hp is also true, then

£ {Tss — RSS

) } = o° = Var(e)

Hence, if there is truly no relationship between any of the predictors and the response,
then on average,
_ (TSS—RSS)/p

F= RSS/(n—p—1)

=1
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Typical Values of the F statistic

Provided conditions for linear regression are met,

RSS | o
E |:W:| =0 = Var(e)

And if Hp is also true, then

£ {Tss — RSS

) } = o° = Var(e)

Hence, if there is truly no relationship between any of the predictors and the response,
then on average,
_ (TSS—RSS)/p

F= RSS/(n—p—1)

=1

Moreover, it is unlikely that F is drastically larger than 1.
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Poll 2: TSS and RSS

Suppose we have a linear model with 25 observations and 4 predictors. Which of the
following provides the best evidence of a relationship between the response and at least 1
of the predictors?

® TSS =64, RSS=4
0 TSS =4, RSS =16
6 TSS =48, RSS =38
® TSS=4 RSS=4
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Improving Model Accuracy

What do we do when model accuracy is low (either high RSE or low R?)?
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Improving Model Accuracy

What do we do when model accuracy is low (either high RSE or low R?)?

® |f some variables are strongly correlated, remove some redundant ones.
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Improving Model Accuracy

What do we do when model accuracy is low (either high RSE or low R?)?

® |f some variables are strongly correlated, remove some redundant ones.
® This process is known as backwards elimination.

® Start with the full model, remove the variable with highest p-value, and refit. Continue
to do so until accuracy ceases to improve.
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Improving Model Accuracy

What do we do when model accuracy is low (either high RSE or low R?)?
® |f some variables are strongly correlated, remove some redundant ones.
® This process is known as backwards elimination.

® Start with the full model, remove the variable with highest p-value, and refit. Continue
to do so until accuracy ceases to improve.

® |f ¢ is too large, add further variables.
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Improving Model Accuracy

What do we do when model accuracy is low (either high RSE or low R?)?
® |f some variables are strongly correlated, remove some redundant ones.
® This process is known as backwards elimination.

® Start with the full model, remove the variable with highest p-value, and refit. Continue
to do so until accuracy ceases to improve.

® |f ¢ is too large, add further variables.
® This process is known as forward selection.

® Start with the null model, create p many SLR models (one for each predictor), and select
the one with best accuracy. Repeat with this new model, creating p — 1 two predictor
models (one for each remaining predictor). Continue until accuracy ceases to improve.
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Improving Model Accuracy

What do we do when model accuracy is low (either high RSE or low R?)?
® |f some variables are strongly correlated, remove some redundant ones.
® This process is known as backwards elimination.

® Start with the full model, remove the variable with highest p-value, and refit. Continue
to do so until accuracy ceases to improve.

® |f ¢ is too large, add further variables.
® This process is known as forward selection.

® Start with the null model, create p many SLR models (one for each predictor), and select
the one with best accuracy. Repeat with this new model, creating p — 1 two predictor
models (one for each remaining predictor). Continue until accuracy ceases to improve.

® |s it possible that none of these models will have the best possible accuracy among all
subsets of predictors?
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Improving Model Accuracy

What do we do when model accuracy is low (either high RSE or low R?)?
® |f some variables are strongly correlated, remove some redundant ones.
® This process is known as backwards elimination.

® Start with the full model, remove the variable with highest p-value, and refit. Continue
to do so until accuracy ceases to improve.

® |f ¢ is too large, add further variables.
® This process is known as forward selection.

® Start with the null model, create p many SLR models (one for each predictor), and select
the one with best accuracy. Repeat with this new model, creating p — 1 two predictor
models (one for each remaining predictor). Continue until accuracy ceases to improve.

® |s it possible that none of these models will have the best possible accuracy among all
subsets of predictors?

® Yes. But we'll cover detailed model selection in Chapter 6.
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