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Outline

In today's class, we will. ..
® Discuss theoretical foundation for linear regression
® Perform inference for simple linear models

® |mplement simple linear regression in R
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Linear Regression

® Suppose we have one or more predictors (X1, Xo, ..., Xp) and a quantitative response
variable Y, and that
Y =f(X,...,Xp) +¢
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Linear Regression

® Suppose we have one or more predictors (X1, Xo, ..., Xp) and a quantitative response
variable Y, and that

Y =f(X,..., Xp) +e

® The function f could theoretically take many forms. But the simplest form assumes f
is a linear function:

f(x1, X2, ..., xp) = Bo + Bixt + -+ + Bpxp

® Note: a change in f is constant per unit change in any of the inputs.

® If Y depends on only 1 predictor X, then the linear model reduces to

y = F(x) = o+ pix
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Linear Regression

® Suppose we have one or more predictors (X1, Xo, ..., Xp) and a quantitative response
variable Y, and that
Y =f(X,...,Xp) +¢

® The function f could theoretically take many forms. But the simplest form assumes f
is a linear function:

f(x1, X2, ..., xp) = Bo + Bixt + -+ + Bpxp

® Note: a change in f is constant per unit change in any of the inputs.

® If Y depends on only 1 predictor X, then the linear model reduces to

y = F(x) = o+ pix

® We'll use Simple Linear Regression (SLR) to build intuition about all linear models
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Approximations and Estimates

® In reality, the relationship f between Y and Xi,..., X, may not be linear

® But many functions can be well-approximated by linear ones (especially when inputs
are restricted to a small range)

® But even if f is truly linear, we still have problems: We do not know the parameters
of the linear model.

® Based on data, we estimate the parameters to create an estimated linear model
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Approximations and Estimates

® In reality, the relationship f between Y and Xi,..., X, may not be linear

® But many functions can be well-approximated by linear ones (especially when inputs
are restricted to a small range)

® But even if f is truly linear, we still have problems: We do not know the parameters
of the linear model.

® Based on data, we estimate the parameters to create an estimated linear model

?:BO"_BIXI"‘""FB\po

® So we are estimating an approximation to a relationship between response and
predictors.
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SLR Review

Consider the relationship between a state's high school grad rate Y and its poverty rate X.
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SLR Review

Consider the relationship between a state's high school grad rate Y and its poverty rate X.
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SLR Review

Consider the relationship between a state's high school grad rate Y and its poverty rate X.
State—by-State Graduation and Poverty R

® Suppose we want to model Y as a

88- function of X

® |et's assume a linear relationship

©
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Y=08+5X+e
® Model (hand-fitted):

High School Graduation Rate, Y

©
=}
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5 10 15
Poverty Rate, X

Nate Wells (Math 243: Stat Learning) Simple Linear Regression September 13th, 2021 7/26



Foundations
[e]e]e]e]e] le]elele)

Residuals

® Residuals are the leftover variation in the data after accounting for model fit.

® Each observation (x;, y;) has its own residual e;, which is the difference between the
observed (y;) and predicted (¥;) value:

&=y — ¥
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® Residuals are the leftover variation in the data after accounting for model fit.

® Each observation (x;, y;) has its own residual e;, which is the difference between the
observed (y;) and predicted (¥;) value:
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State-by-State Graduation and Poverty Rates, with Residual Heights
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Residuals

® Residuals are the leftover variation in the data after accounting for model fit.
® Each observation (x;, y;) has its own residual e;, which is the difference between the

observed (Y;) and predicted (§;) value:

&=y — ¥

State-by-State Graduation and Poverty Rates, with Residual Heights

High School Graduation Rate, Y
i
°

Poverty Rate, X

® QOregon's residual is
e=y—§=869—862=0.7
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Residual Plot

® To visualize the degree of accuracy of a linear model, we use residual plots:

Residual Plot for Graduation and Poverty Rates
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Residual Plot

® To visualize the degree of accuracy of a linear model, we use residual plots:

Residual Plot for Graduation and Poverty Rates

2

Residuals for Graduation Rate

Poverty Rate, X

® Points preserve original x-position, but with y-position equal to residual.
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® To visualize the degree of accuracy of a linear model, we use residual plots:

Residual Plot for Graduation and Poverty Rates

2

Residuals for Graduation Rate

Poverty Rate, X

® Points preserve original x-position, but with y-position equal to residual.
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Residual Sum of Squares

® Define the Residual Sum of Squares (RSS) as

n

RSS=) (vi—9)=e+ - +e

i=1
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Residual Sum of Squares

® Define the Residual Sum of Squares (RSS) as

RSS=) (vi—9)=e+ - +e
i=1
® Note that RSS = n- MSE.
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Residual Sum of Squares

® Define the Residual Sum of Squares (RSS) as

n

RSS=) (vi—9)=e+ - +e
i=1
® Note that RSS = n- MSE.
® Using calculus or linear algebra, we can show that RSS is minimized when
s i i =Xy =)
61 = n —
Z,‘:1(Xi - X)2

Bo =y — Pix
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Inference for Linear Models
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Statistical Inference

® Goal: Use statistics calculated from data to make estimates about unknown
parameters
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Statistical Inference

Goal: Use statistics calculated from data to make estimates about unknown
parameters

® Parameters: [y, 51

® Statistics: Bo, Bl

Tools: confidence intervals, hypothesis tests
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Statistical Inference

® Goal: Use statistics calculated from data to make estimates about unknown
parameters

® Parameters: (3, 01
® Statistics: Bo, Bl
® Tools: confidence intervals, hypothesis tests

® The Problems: Our model will change if built using a different random sample. So in
addition to estimates, we need to know about variability

Nate Wells (Math 243: Stat Learning) Simple Linear Regression September 13th, 2021 14 /26



Inference for Linear Models
00@00000000000

The Confidence Interval

® Confidence Intervals give estimates and express an amount of uncertainty we have
about those estimates
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The Confidence Interval

® Confidence Intervals give estimates and express an amount of uncertainty we have
about those estimates

® A C-level confidence interval for a parameter 6 using the statistic 0 takes the form

0+ t; - SE(0)

® The value t£ is the 1 — (1 — C)/2 quantile for the sampling distribution of 0

® e iffis approximately Normally distributed and C = .95, then t; =~ 2.
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The Confidence Interval

Confidence Intervals give estimates and express an amount of uncertainty we have
about those estimates

® A C-level confidence interval for a parameter 6 using the statistic 0 takes the form

0+ t; - SE(0)

The value t{ is the 1 — (1 — C)/2 quantile for the sampling distribution of 0

® e iffis approximately Normally distributed and C = .95, then t; =~ 2.

The value SE(é) is the standard error of , or the standard deviation of the sampling
distribution
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Common Regression Assumptions

In order to safely use simple linear regression, we require these assumptions:

@ Y is related to X by a simple linear regression model.

Y=00+/X+e

Nate Wells (Math 243: Stat Learning) Simple Linear Regression September 13th, 2021 16 /26



Inference for Linear Models
000@0000000000

Common Regression Assumptions

In order to safely use simple linear regression, we require these assumptions:

@ Y is related to X by a simple linear regression model.

Y=00+/X+e

® The errors e1, €, ..., e, are independent of one another.

Nate Wells (Math 243: Stat Learning) Simple Linear Regression September 13th, 2021 16 /26



Inference for Linear Models
000@0000000000

Common Regression Assumptions

In order to safely use simple linear regression, we require these assumptions:

@ Y is related to X by a simple linear regression model.

Y=00+/X+e

® The errors e1, €, ..., e, are independent of one another.

© The errors have a common variance Var(e) = o°.

Nate Wells (Math 243: Stat Learning) Simple Linear Regression September 13th, 2021 16 /26



Inference for Linear Models
000@0000000000

Common Regression Assumptions

In order to safely use simple linear regression, we require these assumptions:

@ Y is related to X by a simple linear regression model.

Y =po+ X +e
® The errors e1, €, ..., e, are independent of one another.
© The errors have a common variance Var(e) = o°.
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Common Regression Assumptions

In order to safely use simple linear regression, we require these assumptions:

@ Y is related to X by a simple linear regression model.

Y =00+ BX+e
® The errors e1, €, ..., e, are independent of one another.
© The errors have a common variance Var(e) = o°.
@ The errors are normally distributed: € ~ N(0, 0?)

If one or more of these conditions do not hold, our predictions may not be accurate and we
should be skeptical of inferential claims.
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The Sampling Distribution of S

Assume the following true model:

f(x) =124 .7x;e ~ N(0,4)
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The Sampling Distribution of S

Assume the following true model:
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The Sampling Distribution of S

Assume the following true model:

f(x) =124 .7x;e ~ N(0,4)

Estimate for f based on 1 simulation
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The Sampling Distribution of S

Assume the following true model:

flx) = e~ N0 4N
Estimates for f based on 1000 S|mulat|ons
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The Sampling Distribution of S

The Sampling Distribution has the following characteristics:

® Centered at 31, i.e. E(Bl) =p.
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The Sampling Distribution of S

The Sampling Distribution has the following characteristics:
® Centered at 31, i.e. E(Bl) = 3.

~ 2
® Var(p) = .
® where Sxx = 27:1()(" —x)?
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The Sampling Distribution of S

The Sampling Distribution has the following characteristics:

® Centered at 31, i.e. E(Bl) =p.

~ 2
® Var(p) = .
® where Sxx = 27:1()(" —x)?

© BilX ~ N(B1, £,).
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Approximating the Sampling Dist. of /31

® Our best estimate of 8 is (1 (since the expected value B is B1)
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® Our best estimate of 8 is (1 (since the expected value B is B1)

® However, since we have to estimate o with the Residual Standard Error
& = RSE = /RSS/n — 2, the distribution of @ isn't Normal. ..
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® Our best estimate of 8 is (1 (since the expected value B is B1)

® However, since we have to estimate o with the Residual Standard Error
& = RSE = /RSS/n — 2, the distribution of @ isn't Normal. ..

® |nstead, it is the t-distribution with n — 2 degrees of freedom.

® Qur confidence interval for Bl is thus
. A A s
+tyon_o- SE here SE =
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Approximating the Sampling Dist. of /31

® Our best estimate of 8 is (1 (since the expected value B is B1)

® However, since we have to estimate o with the Residual Standard Error
& = RSE = /RSS/n — 2, the distribution of @ isn't Normal. ..

® |nstead, it is the t-distribution with n — 2 degrees of freedom.

® Qur confidence interval for Bl is thus
. A A s
+tyon_o- SE here SE =
/61 /2,n—2 (/61) W (ﬁl) m

Interpretation We are 95% confident that the true slope relating x and y lies between
lower and upper bound of this interval.
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Hypothesis test for /§1

Suppose we are interested in testing the claim that the slope is zero.

Hozﬁi)zO Vs HA:Bf;éO
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Hypothesis test for /§1

Suppose we are interested in testing the claim that the slope is zero.

Hozﬁi)zO Vs HA:Bf;éO
® Consider the statistic t given by
__ B
SE(f1)

® Then t will be t-distributed with n — 2 degrees of freedom and SE(51) calculated the
same as in the Cl.
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® Consider the statistic t given by
__ B
SE(f1)

® Then t will be t-distributed with n — 2 degrees of freedom and SE(51) calculated the
same as in the Cl.

® The p-value for an observed test statistic t is the probability that a randomly chosen
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Hypothesis test for /§1

Suppose we are interested in testing the claim that the slope is zero.

Hozﬁi):O Vs HA:Bf;éO
® Consider the statistic t given by
__ B
SE(f1)

® Then t will be t-distributed with n — 2 degrees of freedom and SE(51) calculated the
same as in the Cl.

® The p-value for an observed test statistic t is the probability that a randomly chosen
value from the t-dist is larger in absolute value than |t|.

® An observed t with p-value less than a desired significance level (often o = 0.05)
gives good evidence against the null-hypothesis.
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Inference for other parameters in the linear model

® \We can also perform inference for (o, although it is often less interesting in practice
(why?)
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Inference for other parameters in the linear model

® \We can also perform inference for (o, although it is often less interesting in practice
(why?)
® We proceed as before, using a t distribution to estimate the sampling distribution of ﬁo.
® However, the SE of fy is

SE(B) = |7+ o]

® Inference is even possible for combinations of 5y and 1 (i.e So + B1x for any fixed
value of x)
® Why might we want to obtain a confidence interval for 3y + 31x7?
® The associated statistic is again t-distributed, although with more complicated SE.

® For details, see DeGroot and Schervish “Probability and Statistics” (or take Math 392)
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