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Foundations Inference for Linear Models

Outline

In today’s class, we will. . .
• Discuss theoretical foundation for linear regression
• Perform inference for simple linear models
• Implement simple linear regression in R
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Foundations Inference for Linear Models

Section 1

Foundations
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Foundations Inference for Linear Models

Linear Regression

• Suppose we have one or more predictors (X1,X2, . . . ,Xp) and a quantitative response
variable Y , and that

Y = f (X1, . . . ,Xp) + ε

• The function f could theoretically take many forms. But the simplest form assumes f
is a linear function:

f (x1, x2, . . . , xp) = β0 + β1x1 + · · ·+ βpxp

• Note: a change in f is constant per unit change in any of the inputs.

• If Y depends on only 1 predictor X , then the linear model reduces to

y = f̂ (x) = β0 + β1x

• We’ll use Simple Linear Regression (SLR) to build intuition about all linear models

Nate Wells (Math 243: Stat Learning) Simple Linear Regression September 13th, 2021 4 / 26



Foundations Inference for Linear Models

Linear Regression

• Suppose we have one or more predictors (X1,X2, . . . ,Xp) and a quantitative response
variable Y , and that

Y = f (X1, . . . ,Xp) + ε

• The function f could theoretically take many forms. But the simplest form assumes f
is a linear function:

f (x1, x2, . . . , xp) = β0 + β1x1 + · · ·+ βpxp

• Note: a change in f is constant per unit change in any of the inputs.

• If Y depends on only 1 predictor X , then the linear model reduces to

y = f̂ (x) = β0 + β1x

• We’ll use Simple Linear Regression (SLR) to build intuition about all linear models

Nate Wells (Math 243: Stat Learning) Simple Linear Regression September 13th, 2021 4 / 26



Foundations Inference for Linear Models

Linear Regression

• Suppose we have one or more predictors (X1,X2, . . . ,Xp) and a quantitative response
variable Y , and that

Y = f (X1, . . . ,Xp) + ε

• The function f could theoretically take many forms. But the simplest form assumes f
is a linear function:

f (x1, x2, . . . , xp) = β0 + β1x1 + · · ·+ βpxp

• Note: a change in f is constant per unit change in any of the inputs.

• If Y depends on only 1 predictor X , then the linear model reduces to

y = f̂ (x) = β0 + β1x

• We’ll use Simple Linear Regression (SLR) to build intuition about all linear models

Nate Wells (Math 243: Stat Learning) Simple Linear Regression September 13th, 2021 4 / 26



Foundations Inference for Linear Models

Linear Regression

• Suppose we have one or more predictors (X1,X2, . . . ,Xp) and a quantitative response
variable Y , and that

Y = f (X1, . . . ,Xp) + ε

• The function f could theoretically take many forms. But the simplest form assumes f
is a linear function:

f (x1, x2, . . . , xp) = β0 + β1x1 + · · ·+ βpxp

• Note: a change in f is constant per unit change in any of the inputs.

• If Y depends on only 1 predictor X , then the linear model reduces to

y = f̂ (x) = β0 + β1x

• We’ll use Simple Linear Regression (SLR) to build intuition about all linear models

Nate Wells (Math 243: Stat Learning) Simple Linear Regression September 13th, 2021 4 / 26



Foundations Inference for Linear Models

Linear Regression

• Suppose we have one or more predictors (X1,X2, . . . ,Xp) and a quantitative response
variable Y , and that

Y = f (X1, . . . ,Xp) + ε

• The function f could theoretically take many forms. But the simplest form assumes f
is a linear function:

f (x1, x2, . . . , xp) = β0 + β1x1 + · · ·+ βpxp

• Note: a change in f is constant per unit change in any of the inputs.

• If Y depends on only 1 predictor X , then the linear model reduces to

y = f̂ (x) = β0 + β1x

• We’ll use Simple Linear Regression (SLR) to build intuition about all linear models

Nate Wells (Math 243: Stat Learning) Simple Linear Regression September 13th, 2021 4 / 26



Foundations Inference for Linear Models

Approximations and Estimates

• In reality, the relationship f between Y and X1, . . . ,Xp may not be linear

• But many functions can be well-approximated by linear ones (especially when inputs
are restricted to a small range)
• But even if f is truly linear, we still have problems: We do not know the parameters
of the linear model.
• Based on data, we estimate the parameters to create an estimated linear model

f̂ = β̂0 + β̂1x1 + · · ·+ β̂pxp

• So we are estimating an approximation to a relationship between response and
predictors.

Nate Wells (Math 243: Stat Learning) Simple Linear Regression September 13th, 2021 5 / 26



Foundations Inference for Linear Models

Approximations and Estimates

• In reality, the relationship f between Y and X1, . . . ,Xp may not be linear
• But many functions can be well-approximated by linear ones (especially when inputs
are restricted to a small range)

• But even if f is truly linear, we still have problems: We do not know the parameters
of the linear model.
• Based on data, we estimate the parameters to create an estimated linear model

f̂ = β̂0 + β̂1x1 + · · ·+ β̂pxp

• So we are estimating an approximation to a relationship between response and
predictors.

Nate Wells (Math 243: Stat Learning) Simple Linear Regression September 13th, 2021 5 / 26



Foundations Inference for Linear Models

Approximations and Estimates

• In reality, the relationship f between Y and X1, . . . ,Xp may not be linear
• But many functions can be well-approximated by linear ones (especially when inputs
are restricted to a small range)
• But even if f is truly linear, we still have problems: We do not know the parameters
of the linear model.

• Based on data, we estimate the parameters to create an estimated linear model

f̂ = β̂0 + β̂1x1 + · · ·+ β̂pxp

• So we are estimating an approximation to a relationship between response and
predictors.

Nate Wells (Math 243: Stat Learning) Simple Linear Regression September 13th, 2021 5 / 26



Foundations Inference for Linear Models

Approximations and Estimates

• In reality, the relationship f between Y and X1, . . . ,Xp may not be linear
• But many functions can be well-approximated by linear ones (especially when inputs
are restricted to a small range)
• But even if f is truly linear, we still have problems: We do not know the parameters
of the linear model.
• Based on data, we estimate the parameters to create an estimated linear model

f̂ = β̂0 + β̂1x1 + · · ·+ β̂pxp

• So we are estimating an approximation to a relationship between response and
predictors.

Nate Wells (Math 243: Stat Learning) Simple Linear Regression September 13th, 2021 5 / 26



Foundations Inference for Linear Models

Approximations and Estimates

• In reality, the relationship f between Y and X1, . . . ,Xp may not be linear
• But many functions can be well-approximated by linear ones (especially when inputs
are restricted to a small range)
• But even if f is truly linear, we still have problems: We do not know the parameters
of the linear model.
• Based on data, we estimate the parameters to create an estimated linear model

f̂ = β̂0 + β̂1x1 + · · ·+ β̂pxp

• So we are estimating an approximation to a relationship between response and
predictors.

Nate Wells (Math 243: Stat Learning) Simple Linear Regression September 13th, 2021 5 / 26



Foundations Inference for Linear Models

SLR Review

Consider the relationship between a state’s high school grad rate Y and its poverty rate X .
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State−by−State Graduation and Poverty Rates

• Suppose we want to model Y as a
function of X

• Let’s assume a linear relationship

Y = β0 + β1X + ε
• Model (hand-fitted):

Ŷ = β̂0 + β̂1X = 96.2− 0.9X
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Foundations Inference for Linear Models

Residuals

• Residuals are the leftover variation in the data after accounting for model fit.
• Each observation (xi , yi ) has its own residual ei , which is the difference between the
observed (yi) and predicted (ŷi) value:

ei = yi − ŷi
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State−by−State Graduation and Poverty Rates, with Residual Heights

Oregon’s residual is
e = y − ŷ = 86.9− 86.2 = 0.7
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Foundations Inference for Linear Models

Residual Plot

• To visualize the degree of accuracy of a linear model, we use residual plots:
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Residual Plot for Graduation and Poverty Rates

• Points preserve original x -position, but with y -position equal to residual.

Nate Wells (Math 243: Stat Learning) Simple Linear Regression September 13th, 2021 10 / 26



Foundations Inference for Linear Models

Residual Plot

• To visualize the degree of accuracy of a linear model, we use residual plots:

−6

−3

0

3

6

5 10 15
Poverty Rate, X

R
es

id
ua

ls
 fo

r 
G

ra
du

at
io

n 
R

at
e

Residual Plot for Graduation and Poverty Rates

• Points preserve original x -position, but with y -position equal to residual.

Nate Wells (Math 243: Stat Learning) Simple Linear Regression September 13th, 2021 10 / 26



Foundations Inference for Linear Models

Residual Plot

• To visualize the degree of accuracy of a linear model, we use residual plots:

OR

−6

−3

0

3

6

5 10 15
Poverty Rate, X

R
es

id
ua

ls
 fo

r 
G

ra
du

at
io

n 
R

at
e

Residual Plot for Graduation and Poverty Rates

• Points preserve original x -position, but with y -position equal to residual.

Nate Wells (Math 243: Stat Learning) Simple Linear Regression September 13th, 2021 11 / 26



Foundations Inference for Linear Models

Residual Sum of Squares

• Define the Residual Sum of Squares (RSS) as

RSS =
n∑

i=1

(yi − ŷi )2 = e21 + · · ·+ e2n

• Note that RSS = n · MSE.

• Using calculus or linear algebra, we can show that RSS is minimized when

β̂1 =
∑n

i=1(xi − x̄)(yi − ȳ)∑n
i=1(xi − x̄)2

β̂0 = ȳ − β̂1x̄
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Foundations Inference for Linear Models

Section 2

Inference for Linear Models
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Foundations Inference for Linear Models

Statistical Inference

• Goal: Use statistics calculated from data to make estimates about unknown
parameters

• Parameters: β0, β1
• Statistics: β̂0, β̂1
• Tools: confidence intervals, hypothesis tests
• The Problems: Our model will change if built using a different random sample. So in
addition to estimates, we need to know about variability
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Foundations Inference for Linear Models

The Confidence Interval

• Confidence Intervals give estimates and express an amount of uncertainty we have
about those estimates

• A C -level confidence interval for a parameter θ using the statistic θ̂ takes the form

θ̂ ± t∗
C · SE(θ̂)

• The value t∗
C is the 1− (1− C)/2 quantile for the sampling distribution of θ̂

• i.e. if θ̂ is approximately Normally distributed and C = .95, then t∗
C ≈ 2.

• The value SE(θ̂) is the standard error of θ̂, or the standard deviation of the sampling
distribution
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Foundations Inference for Linear Models

Common Regression Assumptions

In order to safely use simple linear regression, we require these assumptions:

1 Y is related to X by a simple linear regression model.

Y = β0 + β1X + ε

2 The errors e1, e2, . . . , en are independent of one another.

3 The errors have a common variance Var(ε) = σ2.

4 The errors are normally distributed: ε ∼ N(0, σ2)

If one or more of these conditions do not hold, our predictions may not be accurate and we
should be skeptical of inferential claims.
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Foundations Inference for Linear Models

The Sampling Distribution of β̂1

Assume the following true model:

f (x) = 12 + .7x ; ε ∼ N(0, 4)

f(x)

20
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x
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Simulated Data from true model
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Foundations Inference for Linear Models

The Sampling Distribution of β̂1

Assume the following true model:

f (x) = 12 + .7x ; ε ∼ N(0, 4)
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Foundations Inference for Linear Models

The Sampling Distribution of β̂1
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Foundations Inference for Linear Models

The Sampling Distribution of β̂1

The Sampling Distribution has the following characteristics:

1 Centered at β1, i.e. E(β̂1) = β.

2 Var(β̂1) = σ2

SXX
.

• where SXX =
∑n

i=1(xi − x̄)2

3 β̂1|X ∼ N(β1, σ
2

SXX
).
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Foundations Inference for Linear Models

Approximating the Sampling Dist. of β̂1

• Our best estimate of β1 is β̂1 (since the expected value β̂1 is β1)

• However, since we have to estimate σ with the Residual Standard Error
σ̂ = RSE =

√
RSS/n − 2, the distribution of β̂1−β1

σ̂
isn’t Normal. . .

• Instead, it is the t-distribution with n − 2 degrees of freedom.
• Our confidence interval for β̂1 is thus

β̂1 ± tα/2,n−2 · SE(β̂1) where SE(β̂1) = s√
SXX

Interpretation We are 95% confident that the true slope relating x and y lies between
lower and upper bound of this interval.

Nate Wells (Math 243: Stat Learning) Simple Linear Regression September 13th, 2021 24 / 26



Foundations Inference for Linear Models

Approximating the Sampling Dist. of β̂1

• Our best estimate of β1 is β̂1 (since the expected value β̂1 is β1)
• However, since we have to estimate σ with the Residual Standard Error
σ̂ = RSE =

√
RSS/n − 2, the distribution of β̂1−β1

σ̂
isn’t Normal. . .

• Instead, it is the t-distribution with n − 2 degrees of freedom.
• Our confidence interval for β̂1 is thus

β̂1 ± tα/2,n−2 · SE(β̂1) where SE(β̂1) = s√
SXX

Interpretation We are 95% confident that the true slope relating x and y lies between
lower and upper bound of this interval.

Nate Wells (Math 243: Stat Learning) Simple Linear Regression September 13th, 2021 24 / 26



Foundations Inference for Linear Models

Approximating the Sampling Dist. of β̂1

• Our best estimate of β1 is β̂1 (since the expected value β̂1 is β1)
• However, since we have to estimate σ with the Residual Standard Error
σ̂ = RSE =

√
RSS/n − 2, the distribution of β̂1−β1

σ̂
isn’t Normal. . .

• Instead, it is the t-distribution with n − 2 degrees of freedom.

• Our confidence interval for β̂1 is thus

β̂1 ± tα/2,n−2 · SE(β̂1) where SE(β̂1) = s√
SXX

Interpretation We are 95% confident that the true slope relating x and y lies between
lower and upper bound of this interval.

Nate Wells (Math 243: Stat Learning) Simple Linear Regression September 13th, 2021 24 / 26



Foundations Inference for Linear Models

Approximating the Sampling Dist. of β̂1

• Our best estimate of β1 is β̂1 (since the expected value β̂1 is β1)
• However, since we have to estimate σ with the Residual Standard Error
σ̂ = RSE =

√
RSS/n − 2, the distribution of β̂1−β1

σ̂
isn’t Normal. . .

• Instead, it is the t-distribution with n − 2 degrees of freedom.
• Our confidence interval for β̂1 is thus

β̂1 ± tα/2,n−2 · SE(β̂1) where SE(β̂1) = s√
SXX

Interpretation We are 95% confident that the true slope relating x and y lies between
lower and upper bound of this interval.

Nate Wells (Math 243: Stat Learning) Simple Linear Regression September 13th, 2021 24 / 26



Foundations Inference for Linear Models

Approximating the Sampling Dist. of β̂1

• Our best estimate of β1 is β̂1 (since the expected value β̂1 is β1)
• However, since we have to estimate σ with the Residual Standard Error
σ̂ = RSE =

√
RSS/n − 2, the distribution of β̂1−β1

σ̂
isn’t Normal. . .

• Instead, it is the t-distribution with n − 2 degrees of freedom.
• Our confidence interval for β̂1 is thus

β̂1 ± tα/2,n−2 · SE(β̂1) where SE(β̂1) = s√
SXX

Interpretation We are 95% confident that the true slope relating x and y lies between
lower and upper bound of this interval.

Nate Wells (Math 243: Stat Learning) Simple Linear Regression September 13th, 2021 24 / 26



Foundations Inference for Linear Models

Hypothesis test for β̂1

Suppose we are interested in testing the claim that the slope is zero.

H0 : β0
1 = 0 vs HA : β0

1 6= 0

• Consider the statistic t given by

t = β̂1

SE(β̂1)

• Then t will be t-distributed with n − 2 degrees of freedom and SE(β̂1) calculated the
same as in the CI.
• The p-value for an observed test statistic t is the probability that a randomly chosen
value from the t-dist is larger in absolute value than |t|.
• An observed t with p-value less than a desired significance level (often α = 0.05)
gives good evidence against the null-hypothesis.
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Foundations Inference for Linear Models

Inference for other parameters in the linear model

• We can also perform inference for β0, although it is often less interesting in practice
(why?)

• We proceed as before, using a t distribution to estimate the sampling distribution of β̂0.

• However, the SE of β̂0 is
SE(β̂0) = σ2

[ 1
n

+
x̄

SXX

]
• Inference is even possible for combinations of β0 and β1 (i.e β0 + β1x for any fixed
value of x)

• Why might we want to obtain a confidence interval for β0 + β1x?
• The associated statistic is again t-distributed, although with more complicated SE.
• For details, see DeGroot and Schervish “Probability and Statistics” (or take Math 392)
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