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Outline

In today's class, we will. ..
® Discuss the Bayes Classifier

® |Implement KNN as estimate for Bayes Classifier
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The Task

Suppose Y is categorical response variable with several levels A, ..., Ak, and that
Xi,..., X, are predictors (either categorical or quantitative).

® Assume that the level of Y is not completely determined by the values of Xi,..., X,.

Nate Wells (Math 243: Stat Learning)

K-Nearest Neighbor

September 10th, 2021



The Bayes Classifier
0O@00000

The Task

Suppose Y is categorical response variable with several levels A, ..., Ak, and that
Xi,..., X, are predictors (either categorical or quantitative).

® Assume that the level of Y is not completely determined by the values of Xi,..., X,.

Goal: Build a model g(Xi,..., X,) that takes values in {A1,..., Ay} that can be used to
predict the class of Y based on Xi,...,X,.
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The Task

Suppose Y is categorical response variable with several levels A, ..., Ak, and that
Xi,..., X, are predictors (either categorical or quantitative).

® Assume that the level of Y is not completely determined by the values of Xi,..., X,.

Goal: Build a model g(Xi,..., X,) that takes values in {A1,..., Ay} that can be used to
predict the class of Y based on Xi,...,X,.

® How do we measure accuracy of our model? - Why not MSE?

® Training data: Compute error rate on observations in training data:

1 n
Training E = - Iy # g(xi
raining Error = — ‘E_l (y # 8(x ))
where I(y,- #* g(x,-)) equals 1 if y; # g(x;) and 0 otherwise.
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The Task

Suppose Y is categorical response variable with several levels A, ..., Ak, and that
Xi,..., X, are predictors (either categorical or quantitative).

® Assume that the level of Y is not completely determined by the values of Xi,..., X,.

Goal: Build a model g(Xi,..., X,) that takes values in {A1,..., Ay} that can be used to
predict the class of Y based on Xi,...,X,.

® How do we measure accuracy of our model? - Why not MSE?

® Training data: Compute error rate on observations in training data:

1 n
Training E = - Iy # g(xi
raining Error = — ‘E_l (y # 8(x ))
where I(y,- #* g(x,-)) equals 1 if y; # g(x;) and 0 otherwise.

® Test data: Compute average proportion of errors on test data

Test Error = Avg. I(y; #* é(xo))
with the average taken across many test observations xg.
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The Best Possible Model

In general, the value of a response Y may depend on more than just the values of the
predictors Xi, ..., X, in a model.
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predictors Xi, ..., X, in a model.

® That is, given the value of predictors xo, the value of the response y, is random.
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The Best Possible Model

In general, the value of a response Y may depend on more than just the values of the
predictors Xi, ..., X, in a model.

® That is, given the value of predictors xo, the value of the response y, is random.

The model (called the Bayes Classifier) which minimizes test error is

g(x0) = argmaxAjP(Y =A| X = x)
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The Best Possible Model

In general, the value of a response Y may depend on more than just the values of the
predictors Xi, ..., X, in a model.

® That is, given the value of predictors xo, the value of the response y, is random.

The model (called the Bayes Classifier) which minimizes test error is
g(x0) = argmaxAjP(Y =Aj| X = x)
® This model assigns Y to the most likely class, given the value of xo.

® A proof can be found on p. 18-22 of Elements of Statistical Learning (uses tools from
adv. probability)
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The Best Possible Model

In general, the value of a response Y may depend on more than just the values of the
predictors Xi, ..., X, in a model.

® That is, given the value of predictors xo, the value of the response y, is random.

The model (called the Bayes Classifier) which minimizes test error is

g(x0) = argmaxAjP(Y =A| X = x)

® This model assigns Y to the most likely class, given the value of xo.

® A proof can be found on p. 18-22 of Elements of Statistical Learning (uses tools from
adv. probability)

® |n practice, we cannot build this optimal model, since we don't know know the
formula for P(Y = Aj| X = x)
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Simulation

® Suppose Y takes values A or B, and X; and Xz are predictors taking values in [0, 1].
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Simulation

® Suppose Y takes values A or B, and X; and Xz are predictors taking values in [0, 1].
® Additionally, suppose that if Xi = x1 and X, = x2, then Y = A with probability

p=(x+x)/2
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Simulation

® Suppose Y takes values A or B, and X; and Xz are predictors taking values in [0, 1].

® Additionally, suppose that if Xi = x1 and X, = x2, then Y = A with probability
p=(q+x)/2

Probability of Y = A

P o0
||

< 050

. 0.00
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Simulation

® Suppose Y takes values A or B, and X; and Xz are predictors taking values in [0, 1].

® Additionally, suppose that if Xi = x1 and X, = x2, then Y = A with probability
p=(q+x)/2

Probability of Y = A

® What is the Bayes Classifier g?

P o0
||

¥ 050

. 0.00
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Simulation

® Suppose Y takes values A or B, and X; and Xz are predictors taking values in [0, 1].

® Additionally, suppose that if Xi = x1 and X, = x2, then Y = A with probability
p=(q+x)/2

Probability of Y = A

1.00
. ® What is the Bayes Classifier g?
0.75
p- 1.00
N 050 Z:Z g(XO) :argma'XAjP(Y = Af | X = XO)
."25 A ifxP4+xE>1
0.25 0.00 = . 2 2
B, ifxi+x<1
0.00
0. bD D.‘ZS 0. ‘50 O.‘75 1. bO

x1
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Simulate Data

Let's simualte 200 data points from this model.
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The Bayes Classifier

The purple arc represents the Bayes Classifier boundary
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Expected Error Rate

In general, using the Bayes Classifier produces an expected error rate of

1—Avg. [ maxP(Y = A;| X = x0)
j
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Expected Error Rate

In general, using the Bayes Classifier produces an expected error rate of
1—Avg. [ maxP(Y = A;| X = x0)
J

® For our simulation, this gives an error of % -3 ~0.274.
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In general, using the Bayes Classifier produces an expected error rate of
1—Avg. [ maxP(Y = A;| X = x0)
J

® For our simulation, this gives an error of % -3 ~0.274.

® Can verify using multivariate calculus or by sampling a large number of times.
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Expected Error Rate

In general, using the Bayes Classifier produces an expected error rate of
1—Avg. [ maxP(Y = A;| X = x0)
J

® For our simulation, this gives an error of % -3 ~0.274.
® Can verify using multivariate calculus or by sampling a large number of times.

® This is the theoretical lower bound on average test error for this classification problem.
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Expected Error Rate

In general, using the Bayes Classifier produces an expected error rate of
1—Avg. [ maxP(Y = A;| X = x0)
J

® For our simulation, this gives an error of % -3 ~0.274.
® Can verify using multivariate calculus or by sampling a large number of times.

® This is the theoretical lower bound on average test error for this classification problem.

® This is analogous to the irreducible error in regression problems
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K-Nearest Neighbors
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From Bayes Classifier

In theory, the Bayes Classifier is our best model for classification.

Nate Wells (Math 243: Stat Learning) K-Nearest Neighbor September 10th, 2021 11/22



K-Nearest Neighbors
O@00000000000

From Bayes Classifier to KNN

In theory, the Bayes Classifier is our best model for classification.

® In practice, we don't know the conditional probability of Y given X, and so cannot
build a Bayes Classifier model.
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From Bayes Classifier to KNN

In theory, the Bayes Classifier is our best model for classification.

® In practice, we don't know the conditional probability of Y given X, and so cannot
build a Bayes Classifier model.

® But given sufficient data, we can estimate the conditional probabilities (assuming they
are generated by a continuous function).
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From Bayes Classifier to KNN

In theory, the Bayes Classifier is our best model for classification.

® In practice, we don't know the conditional probability of Y given X, and so cannot
build a Bayes Classifier model.

® But given sufficient data, we can estimate the conditional probabilities (assuming they
are generated by a continuous function).

Given a positive integer K and a test observation xp, let Ny denote the K nearest training
observations to xp. Then

P(Y = A | X = x0) ~ KZN:/(y, A))
i€Ng
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From Bayes Classifier to KNN

In theory, the Bayes Classifier is our best model for classification.

® In practice, we don't know the conditional probability of Y given X, and so cannot
build a Bayes Classifier model.

® But given sufficient data, we can estimate the conditional probabilities (assuming they
are generated by a continuous function).

Given a positive integer K and a test observation xp, let Ny denote the K nearest training
observations to xp. Then

P(Y = A | X = x0) ~ KZN:/(y, A))
i€Ng

® Our model for P is therefore Pj(xp) = % ZieNo I(y: = Aj).
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From Bayes Classifier to KNN

In theory, the Bayes Classifier is our best model for classification.

® In practice, we don't know the conditional probability of Y given X, and so cannot
build a Bayes Classifier model.

® But given sufficient data, we can estimate the conditional probabilities (assuming they
are generated by a continuous function).

Given a positive integer K and a test observation xp, let Ny denote the K nearest training
observations to xp. Then

P(Y = A | X = x0) ~ KZN:/(y, A))
i€Ng

® Our model for P is therefore Pj(xp) = % ZieNo I(y: = Aj).

® And our classifier model is g(xo) = argmaxAleDj(xo)
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Classify Points

Classify xo for K = 1,2, 3,5, 10, 200.
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Classification Boundaries

Here are the classification boundaries for a variety of values of K

Training Data and Bayes Classifier
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Here are the classification boundaries for a variety of values of K.
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Here are the classification boundaries for a variety of values of K.
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Here are the classification boundaries for a variety of values of K.
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Here are the classification boundaries for a variety of values of K.

k =100
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Error Rates

The graph below shows error rates for the training set, as well as a test set of 100 points.

Error Rates for KNN

0.44

error_type

error

test_error

=e= train_error

0.0 .

100 75 50 25 0
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Extra Practice

@ Use the first part of the .Rmd file on the course website to generate 4 random points
and form classification boundaries for K = 1 and K = 2 KNN.

® Then use the second part of the .Rmd file to classify 5 randomly generated points.
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