LDA Extensions

Nate Wells

Math 243: Stat Learning

November 5th, 2021

Outline

In today's class, we will...

- Create a handmade LDA model
- Discuss LDA with two or more predictors
- Implement LDA in R
- Define QDA and compare to LDA

Handmade LDA model			
●00000	0000	000000	000000

Section 1

Handmade LDA model

Handmade LDA model		
00000		

Suppose Y is a categorical variable with ℓ levels, and for each level A_j , that

```
X|Y = A_j \sim N(\mu_j, \sigma).
```

Handmade LDA model			
00000	0000	000000	000000

Suppose Y is a categorical variable with ℓ levels, and for each level A_j , that

$$X|Y = A_j \sim N(\mu_j, \sigma).$$

The discriminant function

$$\delta_j(x) = x \cdot rac{\mu_j}{\sigma^2} - rac{\mu_j^2}{2\sigma^2} + \ln \pi_j$$

can be used to classify an observation by choosing the level A_j whose discriminant is largest at x.

Handmade LDA model			
00000	0000	000000	000000

Suppose Y is a categorical variable with ℓ levels, and for each level A_j , that

$$X|Y = A_j \sim N(\mu_j, \sigma).$$

The discriminant function

$$\delta_j(x) = x \cdot rac{\mu_j}{\sigma^2} - rac{\mu_j^2}{2\sigma^2} + \ln \pi_j$$

can be used to classify an observation by choosing the level A_j whose discriminant is largest at x.

We estimate the values of μ_i and σ from the sample data:

$$\hat{\mu}_j = \frac{1}{n_j} \sum_{i: y_i = A_k} x_i$$

Handmade LDA model			
00000	0000	000000	000000

Suppose Y is a categorical variable with ℓ levels, and for each level A_j , that

$$X|Y = A_j \sim N(\mu_j, \sigma).$$

The discriminant function

$$\delta_j(x) = x \cdot rac{\mu_j}{\sigma^2} - rac{\mu_j^2}{2\sigma^2} + \ln \pi_j$$

can be used to classify an observation by choosing the level A_j whose discriminant is largest at x.

We estimate the values of μ_i and σ from the sample data:

$$\hat{\mu}_j = \frac{1}{n_j} \sum_{i: y_i = A_k} x_i$$

$$\hat{\sigma}^2 = \frac{1}{n-\ell} \sum_{j=1}^{\ell} \sum_{i:y_i=A_k}^{\ell} (x_i - \hat{\mu}_j)^2$$

Handmade LDA model			
00000	0000	000000	000000

Simulated Data

Suppose $X|Y = 0 \sim N(1,1)$ and $X|Y = 1 \sim N(3,1)$, and that $\pi_0 = .75$ and $\pi_1 = .25$.

Handmade LDA model			
00000	0000	000000	000000

Simulated Data

Suppose $X|Y = 0 \sim N(1,1)$ and $X|Y = 1 \sim N(3,1)$, and that $\pi_0 = .75$ and $\pi_1 = .25$.

• What feature of the graph shows that $\pi_0 = .75$ and $\pi_1 = .25$?

Handmade LDA model		
000000		

Find Estimates

```
Estimates for \mu_j and \pi_j
d %>% group_by(Y) %>% summarize(pi = n()/n, mu = mean(X))
```

A tibble: 2 x 3
Y pi mu
<chr> <dbl> <dbl> <dbl>
1 0 0.75 0.828
2 1 0.25 3.22

Handmade LDA model		
000000		

Find Estimates

```
Estimates for \mu_i and \pi_i
d %>% group_by(Y) %>% summarize(pi = n()/n, mu = mean(X))
## # A tibble: 2 x 3
## Y
        pi
                   mu
## <chr> <dbl> <dbl>
## 1 0 0.75 0.828
## 2 1
      0.25 3.22
Estimate for \sigma^2.
d %>% group_by(Y) %>% summarize(ssx = var(X) * (n() - 1)) %>%
  summarize(sigma_sq = sum(ssx)/(n-2))
## # A tibble: 1 x 1
##
     sigma_sq
##
     <dbl>
## 1 0.992
```

Handmade LDA model			
000000	0000	000000	000000

Solve for intersection of discriminant functions: $\delta_0(c) = \delta_1(c)$ when

Handmade LDA model		
000000		

Solve for intersection of discriminant functions: $\delta_0(c) = \delta_1(c)$ when

$$c = rac{\mu_0 + \mu_1}{2} + rac{\sigma^2(\ln \pi_0 - \ln \pi_1)}{\mu_1 - \mu_0}$$

Handmade LDA model			
000000	0000	000000	000000

Solve for intersection of discriminant functions: $\delta_0(c) = \delta_1(c)$ when

$$c = rac{\mu_0 + \mu_1}{2} + rac{\sigma^2(\ln \pi_0 - \ln \pi_1)}{\mu_1 - \mu_0}$$

c<- (mu0 + mu1)/2 + (sigma2*log(pi0) - log(pi1))/(mu1-mu0)
c</pre>

[1] 2.483001

Handmade LDA model			
000000	0000	000000	000000

Solve for intersection of discriminant functions: $\delta_0(c) = \delta_1(c)$ when

$$c = rac{\mu_0 + \mu_1}{2} + rac{\sigma^2(\ln \pi_0 - \ln \pi_1)}{\mu_1 - \mu_0}$$

c<- (mu0 + mu1)/2 + (sigma2*log(pi0) - log(pi1))/(mu1-mu0)
c</pre>

```
## [1] 2.483001
Write a function to create discriminant functions:
discriminant <- function(x, pi, mu, sigma2) {
    x * (mu/sigma2) - (mu^2)/(2 * sigma2) + log(pi)
}</pre>
```

Handmade LDA model			
000000	0000	000000	000000

Solve for intersection of discriminant functions: $\delta_0(c) = \delta_1(c)$ when

$$c = rac{\mu_0 + \mu_1}{2} + rac{\sigma^2(\ln \pi_0 - \ln \pi_1)}{\mu_1 - \mu_0}$$

c<- (mu0 + mu1)/2 + (sigma2*log(pi0) - log(pi1))/(mu1-mu0)
c</pre>

```
## [1] 2.483001
Write a function to create discriminant functions:
discriminant <- function(x, pi, mu, sigma2) {
    x * (mu/sigma2) - (mu^2)/(2 * sigma2) + log(pi)
}</pre>
```

Evaluate discriminant function on data for each class:

```
d0 <- discriminant(d$X, pi0, mu0, sigma2)
d1 <- discriminant(d$X, pi1, mu1, sigma2)</pre>
```

Handmade LDA model		
00000		

Plots

Handmade LDA model		
00000		

Plots

• Why don't discriminant functions intersect at the same point as density curves?

LDA with multiple predictors	
0000	

Section 2

LDA with multiple predictors

	LDA with multiple predictors		
000000	0000	000000	000000

Multivariate Gaussian Distributions

A vector $X = (X_1, X_2, ..., X_p)$ is said to have multivariate gaussian distribution if all linear combinations of coordinates $a1X_1 + a_2X_2 + \cdots + a_pX_p$ have a Normal distribution.

LDA with multiple predictors	
0000	

Multivariate Gaussian Distributions

A vector $X = (X_1, X_2, ..., X_p)$ is said to have multivariate gaussian distribution if all linear combinations of coordinates $a1X_1 + a_2X_2 + \cdots + a_pX_p$ have a Normal distribution.

A multivariate gaussian distribution is specified by mean vector $\mu = (\mu_1, \mu_2, \dots, \mu_p)$ and covariance matrix

$$\Sigma = \begin{pmatrix} \operatorname{Var}(X_1) & \operatorname{Cov}(X_1, X_2) & \cdots & \operatorname{Cov}(X_1, X_p) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Var}(X_2) & \cdots & \operatorname{Cov}(X_2, X_p) \\ \vdots & & \ddots & \vdots \\ \operatorname{Cov}(X_p, X_1) & \operatorname{Cov}(X_p, X_2) & & \operatorname{Var}(X_p) \end{pmatrix}$$

	LDA with multiple predictors		
000000	0000	0000000	000000

Multivariate Gaussian Distributions

A vector $X = (X_1, X_2, ..., X_p)$ is said to have multivariate gaussian distribution if all linear combinations of coordinates $a1X_1 + a_2X_2 + \cdots + a_pX_p$ have a Normal distribution.

A multivariate gaussian distribution is specified by mean vector $\mu = (\mu_1, \mu_2, \dots, \mu_p)$ and covariance matrix

$$\Sigma = \begin{pmatrix} \operatorname{Var}(X_1) & \operatorname{Cov}(X_1, X_2) & \cdots & \operatorname{Cov}(X_1, X_p) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Var}(X_2) & \cdots & \operatorname{Cov}(X_2, X_p) \\ \vdots & & \ddots & \vdots \\ \operatorname{Cov}(X_p, X_1) & \operatorname{Cov}(X_p, X_2) & & \operatorname{Var}(X_p) \end{pmatrix}$$

The multivariate Gaussian density f on $x \in \mathbb{R}^{p}$ is

$$f(x) = \frac{1}{(2\pi)^{p/2} (|\text{det}\Sigma|)^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

	LDA with multiple predictors		
000000	0000	0000000	000000

Multivariate Scatterplot

	LDA with multiple predictors		
000000	0000	000000	000000

Suppose that Y is categorical with ℓ levels and that $X = (X_1, \ldots, X_p)$ are a vector of predictors. Assume that $X | Y = A_j \sim N(\mu_j, \Sigma)$ with conditional density f_j , where Σ is common to all conditional densities.

	LDA with multiple predictors		
000000	0000	000000	000000

Suppose that Y is categorical with ℓ levels and that $X = (X_1, \ldots, X_p)$ are a vector of predictors. Assume that $X | Y = A_j \sim N(\mu_j, \Sigma)$ with conditional density f_j , where Σ is common to all conditional densities.

As before, we consider the log-likelihood ratio:

$$\ln \frac{P(Y = A_j \mid X = x)}{P(Y = A_k \mid X = x)} = \ln \frac{f_j(x)\pi_j}{f_k(x)\pi_k}$$

	LDA with multiple predictors		
000000	0000	000000	000000

Suppose that Y is categorical with ℓ levels and that $X = (X_1, \ldots, X_p)$ are a vector of predictors. Assume that $X | Y = A_j \sim N(\mu_j, \Sigma)$ with conditional density f_j , where Σ is common to all conditional densities.

As before, we consider the log-likelihood ratio:

$$\ln \frac{P(Y = A_j | X = x)}{P(Y = A_k | X = x)} = \ln \frac{f_j(x)\pi_j}{f_k(x)\pi_k}$$

The discriminant function $\delta_j(x)$ for $x \in \mathbb{R}^p$ is

$$\delta_j(\mathbf{x}) = \mathbf{x}^T \mathbf{\Sigma}^{-1} \mu_j - \frac{1}{2} \mu_j^T \mathbf{\Sigma}^{-1} \mu_j + \ln \pi_j$$

	LDA with multiple predictors		
000000	0000	000000	000000

Suppose that Y is categorical with ℓ levels and that $X = (X_1, \ldots, X_p)$ are a vector of predictors. Assume that $X | Y = A_j \sim N(\mu_j, \Sigma)$ with conditional density f_j , where Σ is common to all conditional densities.

As before, we consider the log-likelihood ratio:

$$\ln \frac{P(Y = A_j | X = x)}{P(Y = A_k | X = x)} = \ln \frac{f_j(x)\pi_j}{f_k(x)\pi_k}$$

The discriminant function $\delta_j(x)$ for $x \in \mathbb{R}^p$ is

$$\delta_j(\mathbf{x}) = \mathbf{x}^T \mathbf{\Sigma}^{-1} \mu_j - \frac{1}{2} \mu_j^T \mathbf{\Sigma}^{-1} \mu_j + \ln \pi_j$$

We classify a point x by assigning it to the level with largest discriminant function at x.

	LDA with multiple predictors		
000000	0000	000000	000000

Suppose that Y is categorical with ℓ levels and that $X = (X_1, \ldots, X_p)$ are a vector of predictors. Assume that $X | Y = A_j \sim N(\mu_j, \Sigma)$ with conditional density f_j , where Σ is common to all conditional densities.

As before, we consider the log-likelihood ratio:

$$\ln \frac{P(Y = A_j | X = x)}{P(Y = A_k | X = x)} = \ln \frac{f_j(x)\pi_j}{f_k(x)\pi_k}$$

The discriminant function $\delta_j(x)$ for $x \in \mathbb{R}^p$ is

$$\delta_j(\mathbf{x}) = \mathbf{x}^T \mathbf{\Sigma}^{-1} \mu_j - \frac{1}{2} \mu_j^T \mathbf{\Sigma}^{-1} \mu_j + \ln \pi_j$$

We classify a point x by assigning it to the level with largest discriminant function at x. Decision boundaries are given by solving for intersections of the $\binom{p}{2}$ pairs of discriminant

functions:

$$x^{T} \Sigma^{-1} \mu_{j} - \frac{1}{2} \mu_{j}^{T} \Sigma^{-1} \mu_{j} + \ln \pi_{j} = x^{T} \Sigma^{-1} \mu_{k} - \frac{1}{2} \mu_{k}^{T} \Sigma^{-1} \mu_{k} + \ln \pi_{k}$$

	LDA in R	
	000000	

Section 3

LDA in R

Nate Wells (Math 243: Stat Learning)

Handmade LDA model	LDA in R	QDA
000000	0●00000	000000

Classification

• The penguins data set from the palmerpenguins package collected by Dr. Kristen Gorman on several attributes of antarctic penguins:

	LDA in R	
	000000	

Classification

• The penguins data set from the palmerpenguins package collected by Dr. Kristen Gorman on several attributes of antarctic penguins:

library(palmerpenguins)
penguins <- penguins %>% drop_na()
glimpse(penguins)

Rows: 333 ## Columns: 8 ## \$ species <fct> Adelie, Adelie, Adelie, Adelie, Adelie, Adelie, Adel-<fct> Torgersen, Torgersen, Torgersen, Torgersen, Torgerse~ ## \$ island <dbl> 39.1, 39.5, 40.3, 36.7, 39.3, 38.9, 39.2, 41.1, 38.6~ ## \$ bill_length_mm ## \$ bill_depth_mm <dbl> 18.7, 17.4, 18.0, 19.3, 20.6, 17.8, 19.6, 17.6, 21.2~ ## \$ flipper_length_mm <int> 181, 186, 195, 193, 190, 181, 195, 182, 191, 198, 18~ ## \$ body_mass_g <int> 3750, 3800, 3250, 3450, 3650, 3625, 4675, 3200, 3800~ ## \$ sex <fct> male, female, female, female, male, female, male, fe~ ## \$ vear <int> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007~ library(rsample) set.seed(115) penguins_split <- initial_split(penguins , strata = species)</pre> penguins_train <- training(penguins_split)</pre> penguins_test <- testing(penguins_split)</pre>

	LDA in R	
	000000	

Penguins Plot

• Can we classify species based on body_mass_g and flipper_length_mm?

Where should we place our linear decision boundaries?

	LDA in R	
	000000	

LDA in R

It would be tedious to compute LDA discriminant functions by hand. So we use the lda function in the mass package.

```
library(MASS)
penguin_lda <- lda(species ~ flipper_length_mm + body_mass_g,data = penguins_train)</pre>
```

	LDA in R	
	000000	

LDA in R

It would be tedious to compute LDA discriminant functions by hand. So we use the lda function in the mass package.

```
library(MASS)
penguin_lda <- lda(species ~ flipper_length_mm + body_mass_g,data = penguins_train)</pre>
```

- The 1da function creates an LDA model which can be used to predict. It also has the following useful elements.
 - prior, the prior probabilities used (defaults to class proportions in training data)
 - means, means for predictors within each group

	LDA in R	
	000000	

LDA in R

It would be tedious to compute LDA discriminant functions by hand. So we use the lda function in the mass package.

```
library(MASS)
penguin_lda <- lda(species ~ flipper_length_mm + body_mass_g,data = penguins_train)</pre>
```

- The 1da function creates an LDA model which can be used to predict. It also has the following useful elements.
 - prior, the prior probabilities used (defaults to class proportions in training data)
- means, means for predictors within each group penguin_lda\$prior

Adelie Chinstrap Gentoo
0.4377510 0.2048193 0.3574297
penguin_lda\$means

##		flipper_length_mm	body_mass_g
##	Adelie	189.8991	3710.550
##	Chinstrap	195.4902	3739.706
##	Gentoo	217.3820	5101.966

	LDA in R	
	0000000	

Predictions

- The mass package has a predict function for lda, which creates a list with two objects:
 - class, the predicted class for each observation
 - posterior, the posterior probabilities for each class

	LDA in R	
	0000000	

Predictions

- The mass package has a predict function for lda, which creates a list with two objects:
 - class, the predicted class for each observation
 - posterior, the posterior probabilities for each class

[1] Adelie Adelie Adelie Adelie Adelie Adelie
Levels: Adelie Chinstrap Gentoo

Adelie Chinstrap Gentoo
1 0.8829216 0.11704567 3.278079e-05
2 0.5821311 0.41748669 3.822059e-04
3 0.7546054 0.24523589 1.586998e-04
4 0.7256116 0.24942525 2.496315e-02
5 0.9420053 0.05799351 1.179860e-06
6 0.8176350 0.18222767 1.373104e-04

	LDA in R	
	0000000	

Error Rate

How well does LDA do?

	LDA in R	
	0000000	

Error Rate

How well does LDA do?

##]	ſruth		
##	Prediction	Adelie	Chinstrap	Gentoo
##	Adelie	31	9	0
##	Chinstrap	6	6	0
##	Gentoo	0	2	30

	LDA in R	
	0000000	

Error Rate

How well does LDA do?

##]	ſruth		
##	Prediction	Adelie	Chinstrap	Gentoo
##	Adelie	31	9	0
##	Chinstrap	6	6	0
##	Gentoo	0	2	30

 It looks like the model had some trouble distinguishing between Adelie and Chinstrap penguins.

accuracy(lda_results, truth = obs, estimate = preds)

A tibble: 1 x 3
.metric .estimator .estimate
<chr> <chr> <chr> <chr> <chr> (dbl>
1 accuracy multiclass 0.798

		LDA in R	
000000	0000	000000	000000

Penguin Decision Boundaries

	QDA
	00000

Section 4

QDA

	QDA
	000000

For a data set with 15 predictors and 1000 observations, would you be more worried about bias (Y) or variance (N) for an LDA model?

	QDA
	000000

For a data set with 15 predictors and 1000 observations, would you be more worried about bias (Y) or variance (N) for an LDA model?

• With lots of data, variance is likely low. But the modeling restrictions of LDA might make bias problematic.

	QDA
	000000

For a data set with 15 predictors and 1000 observations, would you be more worried about bias (Y) or variance (N) for an LDA model?

- With lots of data, variance is likely low. But the modeling restrictions of LDA might make bias problematic.
- We might be able to improve MSE by considering a more complex model.

	QDA
	000000

For a data set with 15 predictors and 1000 observations, would you be more worried about bias (Y) or variance (N) for an LDA model?

- With lots of data, variance is likely low. But the modeling restrictions of LDA might make bias problematic.
- We might be able to improve MSE by considering a more complex model.

One underlying assumption for LDA was that all conditional distribution of predictors $P(X = x | Y = y_j)$ had the same variance (or covariance matrix, for $p \ge 2$).

	QDA
	000000

For a data set with 15 predictors and 1000 observations, would you be more worried about bias (Y) or variance (N) for an LDA model?

- With lots of data, variance is likely low. But the modeling restrictions of LDA might make bias problematic.
- We might be able to improve MSE by considering a more complex model.

One underlying assumption for LDA was that all conditional distribution of predictors $P(X = x | Y = y_j)$ had the same variance (or covariance matrix, for $p \ge 2$).

Lifting this restriction leads to Quadratic Discriminant Analysis (QDA)

	QDA
	000000

Suppose that Y is categorical with ℓ levels and that $X = (X_1, \ldots, X_p)$ are a vector of predictors. Assume that $X|Y = A_j \sim N(\mu_j, \Sigma_j)$ with conditional density f_j .

	QDA
	000000

Suppose that Y is categorical with ℓ levels and that $X = (X_1, \ldots, X_p)$ are a vector of predictors. Assume that $X|Y = A_j \sim N(\mu_j, \Sigma_j)$ with conditional density f_j .

As with LDA, we consider the log likelihood ratios

$$\ln \frac{P(Y = A_j | X = x)}{P(Y = A_k | X = x)} = \ln \frac{f_j(x)\pi_j}{f_k(x)\pi_k}$$

	QDA
	000000

Suppose that Y is categorical with ℓ levels and that $X = (X_1, \ldots, X_p)$ are a vector of predictors. Assume that $X|Y = A_j \sim N(\mu_j, \Sigma_j)$ with conditional density f_j .

As with LDA, we consider the log likelihood ratios

$$\ln \frac{P(Y = A_j | X = x)}{P(Y = A_k | X = x)} = \ln \frac{f_j(x)\pi_j}{f_k(x)\pi_k}$$

But now when we substitute the formula for multivariate densities f_i , the variance (or covariance) terms in numerator and denominator do **not** cancel.

	QDA
	000000

Suppose that Y is categorical with ℓ levels and that $X = (X_1, \ldots, X_p)$ are a vector of predictors. Assume that $X|Y = A_j \sim N(\mu_j, \Sigma_j)$ with conditional density f_j .

As with LDA, we consider the log likelihood ratios

$$\ln \frac{P(Y = A_j | X = x)}{P(Y = A_k | X = x)} = \ln \frac{f_j(x)\pi_j}{f_k(x)\pi_k}$$

But now when we substitute the formula for multivariate densities f_i , the variance (or covariance) terms in numerator and denominator do **not** cancel.

This leads to the QDA discriminant function $\delta_j(x)$:

$$\delta_j(x) = -\frac{1}{2}x^T \Sigma_j^{-1} x + x^T \Sigma_j^{-1} \mu_j - \frac{1}{2}\mu_j^T \Sigma_j^{-1} \mu_j - \frac{1}{2} \ln \det \Sigma_j + \ln \pi_j$$

	QDA
	000000

Suppose that Y is categorical with ℓ levels and that $X = (X_1, \ldots, X_p)$ are a vector of predictors. Assume that $X|Y = A_j \sim N(\mu_j, \Sigma_j)$ with conditional density f_j .

As with LDA, we consider the log likelihood ratios

$$\ln \frac{P(Y = A_j | X = x)}{P(Y = A_k | X = x)} = \ln \frac{f_j(x)\pi_j}{f_k(x)\pi_k}$$

But now when we substitute the formula for multivariate densities f_i , the variance (or covariance) terms in numerator and denominator do **not** cancel.

This leads to the QDA discriminant function $\delta_j(x)$:

$$\delta_j(x) = -\frac{1}{2}x^T \boldsymbol{\Sigma}_j^{-1} x + x^T \boldsymbol{\Sigma}_j^{-1} \mu_j - \frac{1}{2} \mu_j^T \boldsymbol{\Sigma}_j^{-1} \mu_j - \frac{1}{2} \ln \det \boldsymbol{\Sigma}_j + \ln \pi_j$$

Which simplifes to the following when p = 1:

$$\delta_j(x) = -x^2 \frac{1}{2\sigma_j} + x \frac{\mu_j}{\sigma_j} - \frac{\mu_j^2}{2\sigma_j} - \frac{1}{2} \ln \sigma_j + \ln \pi_j$$

	QDA
	000000

In R

##		「ruth		
##	Prediction	Adelie	Chinstrap	Gentoo
##	Adelie	32	12	0
##	Chinstrap	5	3	0
##	Gentoo	0	2	30

Handmade LDA model	LDA with multiple predictors	LDA in R	QDA
000000		0000000	000●00

In R

##		Truth					
##	Prediction	Adelie	Chinstrap	${\tt Gentoo}$			
##	Adelie	32	12	0			
##	Chinstrap	5	3	0			
##	Gentoo	0	2	30			
Ho	w did we do?						
aco	curacy(pengu	in_resul	ts, truth	= obs,	estimate	= preds)	
## ## ## ##	<pre># A tibble: .metric <chr> 1 accuracy 1</chr></pre>	1 x 3 .estimat <chr> multicla</chr>	cor .estima <dl ass 0.7</dl 	ate 51> 774			

			QDA
000000	0000	000000	000000

QDA Decision Boundaries

			QDA
000000	0000	000000	000000

LDA - QDA Comparison

