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Outline

In today’s class, we will. . .
• Discuss LDA theory and motivation
• Build an LDA classifier by hand
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Section 1

LDA
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Logistic Regression, KNN, and Bayes’ Classifier

Recall that for a binary classification problem, the average test error rate is minimized
using the Bayes’ classifier:

f (x0) = argmaxjP(Y = j |X = x0) j ∈ {0, 1}

Both KNN and Logistic regression attempt to estimate the conditional probability
p(X) = P(Y = 1 |X):
• Logistic regression:

p(X) = eβ0+β1X1+···+βpXp

1 + eβ0+β1X1+···+βpXp

• KNN:
p(X) = 1

K
∑
i∈N0

I(yi = 1)
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The Law of Total Probability

Suppose A1,A2, . . . ,Ak are a list of events that are:
• mutually exclusive: P(Ai and Aj) = 0
• exhaustive: P(A1) + P(A2) · · ·+ P(Ak) = 1

• Example: Flip two coins, and let A1 = both flips are different,
A2 = both flips are heads, A3 = both flips are tails.

Then for any other event B,

P(B) = P(B|A1)P(A1) + P(B|A2)P(A2) + · · ·+ P(B|Ak)P(Ak)

Example
Consider two boxes of marbles, the first containing 60% blue and 40% red, and the second
containing 10% blue and 90% red. Suppose we draw a marble from the first box with 20%
probability and from the second box with 80% probability.
• What is the probability we draw a blue marble?
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Bayes’ Rule

For any events A and B,
P(A|B) = P(B|A)P(A)

P(B)

• P(A) is called the prior probability of A and represents our initial beliefs about the
event A.
• Suppose B is an event that we observe occurring.
• P(A|B) is called the posterior probability of A and represents our updated beliefs
about the event A in light of the event B.

Example
Suppose a test for a certain disease has specificity .8 and sensitivity .95, and that the
disease has prior prevalence of 0.01. Find the posterior probability that an individual who
tests positive for the disease actually has the disease.

Nate Wells (Math 243: Stat Learning) Linear Discriminant Analysis November 3rd, 2021 6 / 20
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The Bayesian Flip

For classification problems, we want to know P(Y = Aj |X = x0).

• Using Bayes’ Rule:

P(Y = Aj |X = x0) =P(X = x0 |Y = Aj)P(Y = Aj)
P(X = X0)

= P(X = x0 |Y = Aj)P(Y = Aj)∑
i P(X = X0|Y = Ai )P(Y = Ai )

• We estimate the conditional probability of the response using. . .
• The conditional distribution P(X = x0 |Y = Aj ) of each predictor given the response
• The prior distribution πi = P(Y = Ai ) of the response

• In practice, we don’t have access to the conditional distributions of the predictors, so
need to estimate them based on data.
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LDA

• Suppose we have just one predictor X and a multi-level categorical response Y .

• What is the most “natural” assumption for the conditional distribution of X , given
Y = Aj?
• If X is normal with mean µj and variance σ2

j , its density is

P(X = x |Y = Aj) = fj(x) = 1√
2πσ2

j
e−(x−µj )2/2σ2j

• Moreover, if we assume all conditional distributions have the same variance σ2
j = σ2,

we can simplify our model.
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Likelihood Ratio

• To determine to which class an observation belongs, based on the conditional
distribution of predictors, we consider the likelihood ratio (LR):

LR = P(Y = Aj |X = x0)
P(Y = Ak |X = x0)

• If LLR ≥ 1, we should predict Aj over Ak . Otherwise, predict Ak over Aj .
• And using Bayes’ Rule:

P(Y = Aj |X = x0)
P(Y = Ak |X = x0)

= P(X = x0 |Y = Aj)P(Y = Aj)/P(X = x0)
P(X = x0 |Y = Ak)P(Y = Ak)/P(X = x0)

= P(X = x0 |Y = Aj)P(Y = Aj)
P(X = x0 |Y = Ak)P(Y = Ak)

= e−(x0−µj )2/2σ2πj

e−(x0−µk )2/2σ2πk
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The Log-liklihood Ratio

The log-liklihood ratio is obtained by taking natural log of the liklihood ratio:

ln LR = ln P(Y = Aj |X = x0)
P(Y = Ak |X = x0)

= ln e−(x0−µj )2/2σ2πj

e−(x0−µk )2/2σ2πk

=(x0 − µk)2/2σ2 − (x0 − µj)2/2σ2 + lnπj − lnπk

• The decision boundary between Aj and Ak is the point c where ln LR = 0, or

(c − µk)2/2σ2 + lnπj = (c − µj)2/2σ2 + lnπk

• Solving for c gives

c = µ1 + µ2

2 + σ2(lnπk − lnπj)
µj − µk
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Binary Classfication with Uniform Prior

Suppose Y is binary, and that each of X |Y = 0 and X |Y = 1 are Normal with common
variance σ and means µ0 and µ1. Moreover, assume a uniform prior π0 = π1 = 1

2

Solve for c in
(c − µk)2/2σ2 + lnπj = (c − µj)2/2σ2 + lnπk

We get c = µ1+µ2
2
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Plots

Suppose X |Y = 0 ∼ N(0, 1) and X |Y = 1 ∼ N(4, 1)

X|Y = 0 X|Y = 1

0.0

0.1

0.2

0.3

0.4

−2 0 2 4 6
x

de
ns

ity
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What is LDA?

If we knew the conditional distribution of the predictors, we could easily create decision
boundaries.

• But we only have data, so we need to estimate those distributions.
• A normal distribution requires only 2 parameters: µ and σ.

• We need one estimate of µ for each level of Y .
• Since we assumed each conditional distribution had the same variance, we need only 1

estimate for σ

• LDA is an algorithm for obtaining these estimates and then classifying based on
log-likelihood ratio.
• Our estimates for µj and σ2 are:

µ̂j = 1
nj

∑
i :yi =Aj

xi σ̂2 = 1
n − `

`∑
j=1

∑
i :yi =Aj

(xi − µ̂j)2
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The Discriminant

Rather than comparing log likelihoods, we could instead look at the log conditional
probability for each level. This function δj(x) is called the discriminant for level j:

δj(x) = x · µj

σ2 −
µ2

j

2σ2 + lnπj

• The discriminant is obtained by taking log-probabilities and discarding terms in the
sum that don’t depend on j.
• We can then assign an observation x0 to the class whose discriminant is largest at

x = x0.
• Why is LDA called Linear Discriminant Analysis?

• Because the discriminant function is linear in x .
• Using this classification algorithm will result in linear decision boundaries.
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LDA

Suppose Y is a categorical variable with ` levels, and for each level Aj , that

X |Y = Aj ∼ N(µj , σ).

The discriminant function

δj(x) = x · µj

σ2 −
µ2

j

2σ2 + lnπj

can be used to classify an observation by choosing the level Aj whose discriminant is
largest at x .

We estimate the values of µj and σ from the sample data:

µ̂j = 1
nj

∑
i :yi =Ak

xi

σ̂2 = 1
n − `

∑̀
j=1

∑
i :yi =Ak

(xi − µ̂j)2
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Simulated Data

Suppose X |Y = 0 ∼ N(1, 1) and X |Y = 1 ∼ N(3, 1), and that π0 = .75 and π1 = .25.
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• What feature of the graph shows that π0 = .75 and π1 = .25?
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Find Estimates

Estimates for µj and πj

d %>% group_by(Y) %>% summarize(pi = n()/n, mu = mean(X))

## # A tibble: 2 x 3
## Y pi mu
## <fct> <dbl> <dbl>
## 1 0 0.75 0.828
## 2 1 0.25 3.22

Estimate for σ2.
d %>% group_by(Y) %>% summarize(ssx = var(X) * (n() - 1)) %>%

summarize(sigma_sq = sum(ssx)/(n-2))

## # A tibble: 1 x 1
## sigma_sq
## <dbl>
## 1 0.992
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The discriminant function

Solve for intersection of discriminant functions: δ0(c) = δ1(c) when

c = µ0 + µ1

2 + σ2(lnπ0 − lnπ1)
µ1 − µ0

c<- (mu0 + mu1)/2 + (sigma2*log(pi0) - log(pi1))/(mu1-mu0)
c

## [1] 2.483001

Write a function to create discriminant functions:
discriminant <- function(x, pi, mu, sigma2) {

x * (mu/sigma2) - (mu^2)/(2 * sigma2) + log(pi)
}

Evaluate discriminant function on data for each class:
d0 <- discriminant(d$X, pi0, mu0, sigma2)
d1 <- discriminant(d$X, pi1, mu1, sigma2)
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Plots

c = 2.48
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• Why don’t discriminant functions intersect at the same point as density curves?
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