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Outline

In today’s class, we will. . .
• Implement random forests in R
• Investigate boosting as an learning method for improving decision trees
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Section 1

Bagging and Random Forests in R
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Random Forests

To create a random forest:

1 Select the number of models m to build and a number of predictors k to use at each
step t

2 Generate a bootstrap sample for each model

3 Build a tree on the bootstrap sample where at each step, a random selection of k of
the p predictors can be used (independent of prior predictors selected)

4 Aggregate the models to create an ensemble model.
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Random Forest in R

• To create both bagged trees and random forests, we use the randomForest function in the randomForest
package in R:

library(randomForest)
rfmodel <- randomForest(Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train)
rfmodel

##
## Call:
## randomForest(formula = Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train)
## Type of random forest: regression
## Number of trees: 500
## No. of variables tried at each split: 2
##
## Mean of squared residuals: 123.925
## % Var explained: 84.38
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Bagging and Random Forests in R Boosting

Modifications

We can control how many trees are generated with ntree and the number of predictors at
each split with mtry

• By default, randomForest uses p/3 predictors for regression and √p predictors for
classification

set.seed(1)
rfmodel2 <- randomForest(Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train,

ntree = 10, mtry = 5)
rfmodel2

##
## Call:
## randomForest(formula = Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train, ntree = 10, mtry = 5)
## Type of random forest: regression
## Number of trees: 10
## No. of variables tried at each split: 5
##
## Mean of squared residuals: 142.6305
## % Var explained: 82.02

How can we create a bagged model using the randomForest function?
• Set mtry= p, where p is the total number predictors available
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Making predictions

• So you have your randomForest model. How do you make predictions?
my_preds<- predict(rfmodel, my_pdxTrees_test)
results <- data.frame(obs = my_pdxTrees_test$Carbon_Sequestration_lb, preds = my_preds)

results %>% head()

## obs preds
## 1 70.7 71.56668
## 2 38.6 45.41645
## 3 39.5 41.68216
## 4 60.9 53.92886
## 5 79.9 95.81464
## 6 77.0 79.18872
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Bagging and Random Forests in R Boosting

Variable Importance

Bagging and Random Forests increase prediction accuracy by reducing variance of the
model.

• But the cost comes in interpretability. We no longer have a single decision tree to
follow to reach our prediction.
• How can we determine which predictors are most influential?

One possibility is to record the total amount of RSS/Purity that is decreased due to splits
of the given predictor, averaged across all trees in the random forest.
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Importance in R

importance(rfmodel)

## IncNodePurity
## DBH 489591.55
## Condition 50434.99
## Tree_Height 203426.25
## Crown_Width_NS 340775.81
## Crown_Width_EW 340999.72
## Crown_Base_Height 63524.57
## Functional_Type 175428.72
## Mature_Size 42685.72

varImpPlot(rfmodel)

Mature_Size

Condition

Crown_Base_Height

Functional_Type

Tree_Height

Crown_Width_NS

Crown_Width_EW

DBH

rfmodel

• For regression trees, node impurity is calculated using RSS.
• For classification trees, node impurity is calculated using Gini Index.
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Comparison of Bagged Trees versus Random Forests
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Section 2

Boosting
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Bagging and Random Forests in R Boosting

Motivation

Suppose you have a model which, given a binary classification dataset, always returned a
classifier with training error strictly lower than 50%.

• Can one use it to build a strong classifier that has error close to 0?
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Bagging and Random Forests in R Boosting

AdaBoost

In the 1990s, Shapire and Freund developed algorithms to do just that.

• Their algorithm (AdaBoost) generates a sequence of weak classifiers, where at each
iteration the algorithm finds the best classifier based on the current sample weights.

• Observations that are incorrectly classifed in the kth iteration recieve more weight in the
(k + 1)th iteration.

• The overall sequence of classifiers are combined into an ensemble which as high
chance of classifying more accurately than any individaul model in the list.
• The algorithm relies on using a sequence of weak learners (low variance, high bias)

• In the tree setting, we can create weak learners by restricting the depth of the tree.
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AdaBoost Graphic
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Boosting for regression

Boosting also works in the regression setting. The gradient boosting machine is a
boosting algorithm that works as follows:

1 Select tree depth D and number of iterations K .

2 Compute the average response ŷ and use this as the initial predicted value for each
observation

3 Compute the residual for each observation.

4 Fit a regression tree of depth D, using the residuals as the response.

5 Predict each observation using the regression tree from the previous step.

6 Update the predicted value of each observation by adding the previous iteration’s
predicted value to the predicted value generated in the previous step.

7 Repeat at total of K times.
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Brief Example

Compute the mean:
mu <- mean(my_pdxTrees_train$Carbon_Sequestration_lb)
mu

## [1] 35.47188

Compute residuals:
my_pdxTrees_train_boost <- my_pdxTrees_train %>%

mutate(residuals1 = Carbon_Sequestration_lb - mu)

Fit a new tree
boost_tree_model<- rpart(residuals1 ~ Crown_Base_Height,

data = my_pdxTrees_train_boost,
control = rpart.control(maxdepth = 2))

Predict
predictions<- predict(boost_tree_model, data = my_pdxTrees_test)+mu

And so on. . .
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Bagging and Random Forests in R Boosting

Boosting Properties

Boosting is similar to random forests: the final prediction is sum of predictions from an
ensemble of models.

• But in Random Forests, all trees are created independently, are of maximum depth,
and contribute equally to the final model.
• In boosting, subsequent trees are are highly dependent on past trees, have minimal
depth, and contribute unequally.

Unlike random forests, boosting is susceptible to over-fitting (since it uses a greedy
algorithm to maximize gradient at each step).
• To remedy, we introduce a shrinkage penalty (like in Ridge Regression/LASSO)

• Instead of adding the full value for a sample to the previous iteration’s predicted value,
only a fraction of the current predicted value is added.

• This fraction is called the learning rate λ, with 0 < λ < 1. (Typical values range from
0.001 to 0.01)
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only a fraction of the current predicted value is added.

• This fraction is called the learning rate λ, with 0 < λ < 1. (Typical values range from
0.001 to 0.01)
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Boosting in R

We use the gbm function in the gmb package to create Boosted Trees

• For regression problems, we use the argument distribution = "gaussian" and for
classification problems, we use distribution = "bernoulli"

• The argument n.trees controls the number of iterations
• The argument interaction.depth controls the depth of each tree
• The argument shrinkage controlls the learning rate λ

library(gbm)
set.seed(10101)
boosted_tree<-gbm(Carbon_Sequestration_lb ~., my_pdxTrees_train,

distribution = "gaussian",
n.trees=1000,
interaction.depth = 3,
shrinkage = .02)
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Summary Information
summary(boosted_tree )

## var rel.inf
## DBH DBH 44.3189142
## Functional_Type Functional_Type 19.3035576
## Crown_Width_EW Crown_Width_EW 17.2013214
## Crown_Width_NS Crown_Width_NS 12.3333653
## Tree_Height Tree_Height 2.8359298
## Condition Condition 2.8316083
## Crown_Base_Height Crown_Base_Height 0.8345050
## Mature_Size Mature_Size 0.3407984
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Boosted Tree Performance

• How does the boosted tree do vs Random Forest? A pruned tree? A linear model?

results %>% group_by(model) %>% rmse(truth = obs, estimate = preds) %>% arrange(.estimate)

## # A tibble: 4 x 4
## model .metric .estimator .estimate
## <chr> <chr> <chr> <dbl>
## 1 boosted_tree rmse standard 10.2
## 2 random_forest rmse standard 10.6
## 3 pruned_tree rmse standard 13.3
## 4 linear_model rmse standard 17.0

• This behavior is typical. Boosted trees and Random Forests often have comparable
performance, and both tend to be more accurate than other model types

• However, this performance comes at significant cost of interpretability.

• Note that boosted trees have a number of important hyperparameters: n.trees,
interaction.depth, shrinkage.

• How do we find the best values of these hyperparameters?
• Cross-validation!
• But tuning all three parameters by “hand” with rsample is tedious. We need a more

powerful cv engine
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