
Bagging and Random Forests in R Boosting

Bagging and Random Forests

Nate Wells

Math 243: Stat Learning

November 15th, 2021

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 1 / 20

Bagging and Random Forests in R Boosting

Outline

In today’s class, we will. . .
• Implement random forests in R
• Investigate boosting as an learning method for improving decision trees

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 2 / 20

Bagging and Random Forests in R Boosting

Section 1

Bagging and Random Forests in R

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 3 / 20

Bagging and Random Forests in R Boosting

Random Forests

To create a random forest:

1 Select the number of models m to build and a number of predictors k to use at each
step t

2 Generate a bootstrap sample for each model

3 Build a tree on the bootstrap sample where at each step, a random selection of k of
the p predictors can be used (independent of prior predictors selected)

4 Aggregate the models to create an ensemble model.

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 4 / 20

Bagging and Random Forests in R Boosting

Random Forests

To create a random forest:

1 Select the number of models m to build and a number of predictors k to use at each
step t

2 Generate a bootstrap sample for each model

3 Build a tree on the bootstrap sample where at each step, a random selection of k of
the p predictors can be used (independent of prior predictors selected)

4 Aggregate the models to create an ensemble model.

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 4 / 20

Bagging and Random Forests in R Boosting

Random Forest in R

• To create both bagged trees and random forests, we use the randomForest function in the randomForest
package in R:

library(randomForest)
rfmodel <- randomForest(Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train)
rfmodel

##
Call:
randomForest(formula = Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 2
##
Mean of squared residuals: 123.925
% Var explained: 84.38

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 5 / 20

Bagging and Random Forests in R Boosting

Modifications

We can control how many trees are generated with ntree and the number of predictors at
each split with mtry

• By default, randomForest uses p/3 predictors for regression and √p predictors for
classification

set.seed(1)
rfmodel2 <- randomForest(Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train,

ntree = 10, mtry = 5)
rfmodel2

##
Call:
randomForest(formula = Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train, ntree = 10, mtry = 5)
Type of random forest: regression
Number of trees: 10
No. of variables tried at each split: 5
##
Mean of squared residuals: 142.6305
% Var explained: 82.02

How can we create a bagged model using the randomForest function?
• Set mtry= p, where p is the total number predictors available

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 6 / 20

Bagging and Random Forests in R Boosting

Modifications

We can control how many trees are generated with ntree and the number of predictors at
each split with mtry

• By default, randomForest uses p/3 predictors for regression and √p predictors for
classification

set.seed(1)
rfmodel2 <- randomForest(Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train,

ntree = 10, mtry = 5)
rfmodel2

##
Call:
randomForest(formula = Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train, ntree = 10, mtry = 5)
Type of random forest: regression
Number of trees: 10
No. of variables tried at each split: 5
##
Mean of squared residuals: 142.6305
% Var explained: 82.02

How can we create a bagged model using the randomForest function?
• Set mtry= p, where p is the total number predictors available

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 6 / 20

Bagging and Random Forests in R Boosting

Modifications

We can control how many trees are generated with ntree and the number of predictors at
each split with mtry

• By default, randomForest uses p/3 predictors for regression and √p predictors for
classification

set.seed(1)
rfmodel2 <- randomForest(Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train,

ntree = 10, mtry = 5)
rfmodel2

##
Call:
randomForest(formula = Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train, ntree = 10, mtry = 5)
Type of random forest: regression
Number of trees: 10
No. of variables tried at each split: 5
##
Mean of squared residuals: 142.6305
% Var explained: 82.02

How can we create a bagged model using the randomForest function?
• Set mtry= p, where p is the total number predictors available

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 6 / 20

Bagging and Random Forests in R Boosting

Modifications

We can control how many trees are generated with ntree and the number of predictors at
each split with mtry

• By default, randomForest uses p/3 predictors for regression and √p predictors for
classification

set.seed(1)
rfmodel2 <- randomForest(Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train,

ntree = 10, mtry = 5)
rfmodel2

##
Call:
randomForest(formula = Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train, ntree = 10, mtry = 5)
Type of random forest: regression
Number of trees: 10
No. of variables tried at each split: 5
##
Mean of squared residuals: 142.6305
% Var explained: 82.02

How can we create a bagged model using the randomForest function?

• Set mtry= p, where p is the total number predictors available

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 6 / 20

Bagging and Random Forests in R Boosting

Modifications

We can control how many trees are generated with ntree and the number of predictors at
each split with mtry

• By default, randomForest uses p/3 predictors for regression and √p predictors for
classification

set.seed(1)
rfmodel2 <- randomForest(Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train,

ntree = 10, mtry = 5)
rfmodel2

##
Call:
randomForest(formula = Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train, ntree = 10, mtry = 5)
Type of random forest: regression
Number of trees: 10
No. of variables tried at each split: 5
##
Mean of squared residuals: 142.6305
% Var explained: 82.02

How can we create a bagged model using the randomForest function?
• Set mtry= p, where p is the total number predictors available

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 6 / 20

Bagging and Random Forests in R Boosting

Making predictions

• So you have your randomForest model. How do you make predictions?
my_preds<- predict(rfmodel, my_pdxTrees_test)
results <- data.frame(obs = my_pdxTrees_test$Carbon_Sequestration_lb, preds = my_preds)

results %>% head()

obs preds
1 70.7 71.56668
2 38.6 45.41645
3 39.5 41.68216
4 60.9 53.92886
5 79.9 95.81464
6 77.0 79.18872

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 7 / 20

Bagging and Random Forests in R Boosting

Variable Importance

Bagging and Random Forests increase prediction accuracy by reducing variance of the
model.

• But the cost comes in interpretability. We no longer have a single decision tree to
follow to reach our prediction.
• How can we determine which predictors are most influential?

One possibility is to record the total amount of RSS/Purity that is decreased due to splits
of the given predictor, averaged across all trees in the random forest.

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 8 / 20

Bagging and Random Forests in R Boosting

Variable Importance

Bagging and Random Forests increase prediction accuracy by reducing variance of the
model.
• But the cost comes in interpretability. We no longer have a single decision tree to
follow to reach our prediction.

• How can we determine which predictors are most influential?

One possibility is to record the total amount of RSS/Purity that is decreased due to splits
of the given predictor, averaged across all trees in the random forest.

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 8 / 20

Bagging and Random Forests in R Boosting

Variable Importance

Bagging and Random Forests increase prediction accuracy by reducing variance of the
model.
• But the cost comes in interpretability. We no longer have a single decision tree to
follow to reach our prediction.
• How can we determine which predictors are most influential?

One possibility is to record the total amount of RSS/Purity that is decreased due to splits
of the given predictor, averaged across all trees in the random forest.

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 8 / 20

Bagging and Random Forests in R Boosting

Variable Importance

Bagging and Random Forests increase prediction accuracy by reducing variance of the
model.
• But the cost comes in interpretability. We no longer have a single decision tree to
follow to reach our prediction.
• How can we determine which predictors are most influential?

One possibility is to record the total amount of RSS/Purity that is decreased due to splits
of the given predictor, averaged across all trees in the random forest.

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 8 / 20

Bagging and Random Forests in R Boosting

Importance in R

importance(rfmodel)

IncNodePurity
DBH 489591.55
Condition 50434.99
Tree_Height 203426.25
Crown_Width_NS 340775.81
Crown_Width_EW 340999.72
Crown_Base_Height 63524.57
Functional_Type 175428.72
Mature_Size 42685.72

varImpPlot(rfmodel)

Mature_Size

Condition

Crown_Base_Height

Functional_Type

Tree_Height

Crown_Width_NS

Crown_Width_EW

DBH

rfmodel

• For regression trees, node impurity is calculated using RSS.
• For classification trees, node impurity is calculated using Gini Index.

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 9 / 20

Bagging and Random Forests in R Boosting

Importance in R

importance(rfmodel)

IncNodePurity
DBH 489591.55
Condition 50434.99
Tree_Height 203426.25
Crown_Width_NS 340775.81
Crown_Width_EW 340999.72
Crown_Base_Height 63524.57
Functional_Type 175428.72
Mature_Size 42685.72

varImpPlot(rfmodel)

Mature_Size

Condition

Crown_Base_Height

Functional_Type

Tree_Height

Crown_Width_NS

Crown_Width_EW

DBH

rfmodel

• For regression trees, node impurity is calculated using RSS.
• For classification trees, node impurity is calculated using Gini Index.

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 9 / 20

Bagging and Random Forests in R Boosting

Importance in R

importance(rfmodel)

IncNodePurity
DBH 489591.55
Condition 50434.99
Tree_Height 203426.25
Crown_Width_NS 340775.81
Crown_Width_EW 340999.72
Crown_Base_Height 63524.57
Functional_Type 175428.72
Mature_Size 42685.72

varImpPlot(rfmodel)

Mature_Size

Condition

Crown_Base_Height

Functional_Type

Tree_Height

Crown_Width_NS

Crown_Width_EW

DBH

rfmodel

• For regression trees, node impurity is calculated using RSS.
• For classification trees, node impurity is calculated using Gini Index.

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 9 / 20

Bagging and Random Forests in R Boosting

Comparison of Bagged Trees versus Random Forests

10.5

11.0

11.5

0 100 200 300 400 500
Number of Trees

R
M

S
E

model

Bagged

Random Forest

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 10 / 20

Bagging and Random Forests in R Boosting

Section 2

Boosting

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 11 / 20

Bagging and Random Forests in R Boosting

Motivation

Suppose you have a model which, given a binary classification dataset, always returned a
classifier with training error strictly lower than 50%.

• Can one use it to build a strong classifier that has error close to 0?

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 12 / 20

Bagging and Random Forests in R Boosting

Motivation

Suppose you have a model which, given a binary classification dataset, always returned a
classifier with training error strictly lower than 50%.
• Can one use it to build a strong classifier that has error close to 0?

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 12 / 20

Bagging and Random Forests in R Boosting

Motivation

Suppose you have a model which, given a binary classification dataset, always returned a
classifier with training error strictly lower than 50%.
• Can one use it to build a strong classifier that has error close to 0?

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 12 / 20

Bagging and Random Forests in R Boosting

AdaBoost

In the 1990s, Shapire and Freund developed algorithms to do just that.

• Their algorithm (AdaBoost) generates a sequence of weak classifiers, where at each
iteration the algorithm finds the best classifier based on the current sample weights.

• Observations that are incorrectly classifed in the kth iteration recieve more weight in the
(k + 1)th iteration.

• The overall sequence of classifiers are combined into an ensemble which as high
chance of classifying more accurately than any individaul model in the list.
• The algorithm relies on using a sequence of weak learners (low variance, high bias)

• In the tree setting, we can create weak learners by restricting the depth of the tree.

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 13 / 20

Bagging and Random Forests in R Boosting

AdaBoost

In the 1990s, Shapire and Freund developed algorithms to do just that.
• Their algorithm (AdaBoost) generates a sequence of weak classifiers, where at each
iteration the algorithm finds the best classifier based on the current sample weights.

• Observations that are incorrectly classifed in the kth iteration recieve more weight in the
(k + 1)th iteration.

• The overall sequence of classifiers are combined into an ensemble which as high
chance of classifying more accurately than any individaul model in the list.
• The algorithm relies on using a sequence of weak learners (low variance, high bias)

• In the tree setting, we can create weak learners by restricting the depth of the tree.

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 13 / 20

Bagging and Random Forests in R Boosting

AdaBoost

In the 1990s, Shapire and Freund developed algorithms to do just that.
• Their algorithm (AdaBoost) generates a sequence of weak classifiers, where at each
iteration the algorithm finds the best classifier based on the current sample weights.

• Observations that are incorrectly classifed in the kth iteration recieve more weight in the
(k + 1)th iteration.

• The overall sequence of classifiers are combined into an ensemble which as high
chance of classifying more accurately than any individaul model in the list.
• The algorithm relies on using a sequence of weak learners (low variance, high bias)

• In the tree setting, we can create weak learners by restricting the depth of the tree.

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 13 / 20

Bagging and Random Forests in R Boosting

AdaBoost

In the 1990s, Shapire and Freund developed algorithms to do just that.
• Their algorithm (AdaBoost) generates a sequence of weak classifiers, where at each
iteration the algorithm finds the best classifier based on the current sample weights.

• Observations that are incorrectly classifed in the kth iteration recieve more weight in the
(k + 1)th iteration.

• The overall sequence of classifiers are combined into an ensemble which as high
chance of classifying more accurately than any individaul model in the list.

• The algorithm relies on using a sequence of weak learners (low variance, high bias)
• In the tree setting, we can create weak learners by restricting the depth of the tree.

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 13 / 20

Bagging and Random Forests in R Boosting

AdaBoost

In the 1990s, Shapire and Freund developed algorithms to do just that.
• Their algorithm (AdaBoost) generates a sequence of weak classifiers, where at each
iteration the algorithm finds the best classifier based on the current sample weights.

• Observations that are incorrectly classifed in the kth iteration recieve more weight in the
(k + 1)th iteration.

• The overall sequence of classifiers are combined into an ensemble which as high
chance of classifying more accurately than any individaul model in the list.
• The algorithm relies on using a sequence of weak learners (low variance, high bias)

• In the tree setting, we can create weak learners by restricting the depth of the tree.

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 13 / 20

Bagging and Random Forests in R Boosting

AdaBoost

In the 1990s, Shapire and Freund developed algorithms to do just that.
• Their algorithm (AdaBoost) generates a sequence of weak classifiers, where at each
iteration the algorithm finds the best classifier based on the current sample weights.

• Observations that are incorrectly classifed in the kth iteration recieve more weight in the
(k + 1)th iteration.

• The overall sequence of classifiers are combined into an ensemble which as high
chance of classifying more accurately than any individaul model in the list.
• The algorithm relies on using a sequence of weak learners (low variance, high bias)

• In the tree setting, we can create weak learners by restricting the depth of the tree.

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 13 / 20

Bagging and Random Forests in R Boosting

AdaBoost Graphic

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 14 / 20

Bagging and Random Forests in R Boosting

Boosting for regression

Boosting also works in the regression setting. The gradient boosting machine is a
boosting algorithm that works as follows:

1 Select tree depth D and number of iterations K .

2 Compute the average response ŷ and use this as the initial predicted value for each
observation

3 Compute the residual for each observation.

4 Fit a regression tree of depth D, using the residuals as the response.

5 Predict each observation using the regression tree from the previous step.

6 Update the predicted value of each observation by adding the previous iteration’s
predicted value to the predicted value generated in the previous step.

7 Repeat at total of K times.

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 15 / 20

Bagging and Random Forests in R Boosting

Brief Example

Compute the mean:
mu <- mean(my_pdxTrees_train$Carbon_Sequestration_lb)
mu

[1] 35.47188

Compute residuals:
my_pdxTrees_train_boost <- my_pdxTrees_train %>%

mutate(residuals1 = Carbon_Sequestration_lb - mu)

Fit a new tree
boost_tree_model<- rpart(residuals1 ~ Crown_Base_Height,

data = my_pdxTrees_train_boost,
control = rpart.control(maxdepth = 2))

Predict
predictions<- predict(boost_tree_model, data = my_pdxTrees_test)+mu

And so on. . .

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 16 / 20

Bagging and Random Forests in R Boosting

Brief Example

Compute the mean:
mu <- mean(my_pdxTrees_train$Carbon_Sequestration_lb)
mu

[1] 35.47188

Compute residuals:
my_pdxTrees_train_boost <- my_pdxTrees_train %>%

mutate(residuals1 = Carbon_Sequestration_lb - mu)

Fit a new tree
boost_tree_model<- rpart(residuals1 ~ Crown_Base_Height,

data = my_pdxTrees_train_boost,
control = rpart.control(maxdepth = 2))

Predict
predictions<- predict(boost_tree_model, data = my_pdxTrees_test)+mu

And so on. . .

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 16 / 20

Bagging and Random Forests in R Boosting

Brief Example

Compute the mean:
mu <- mean(my_pdxTrees_train$Carbon_Sequestration_lb)
mu

[1] 35.47188

Compute residuals:
my_pdxTrees_train_boost <- my_pdxTrees_train %>%

mutate(residuals1 = Carbon_Sequestration_lb - mu)

Fit a new tree
boost_tree_model<- rpart(residuals1 ~ Crown_Base_Height,

data = my_pdxTrees_train_boost,
control = rpart.control(maxdepth = 2))

Predict
predictions<- predict(boost_tree_model, data = my_pdxTrees_test)+mu

And so on. . .

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 16 / 20

Bagging and Random Forests in R Boosting

Brief Example

Compute the mean:
mu <- mean(my_pdxTrees_train$Carbon_Sequestration_lb)
mu

[1] 35.47188

Compute residuals:
my_pdxTrees_train_boost <- my_pdxTrees_train %>%

mutate(residuals1 = Carbon_Sequestration_lb - mu)

Fit a new tree
boost_tree_model<- rpart(residuals1 ~ Crown_Base_Height,

data = my_pdxTrees_train_boost,
control = rpart.control(maxdepth = 2))

Predict
predictions<- predict(boost_tree_model, data = my_pdxTrees_test)+mu

And so on. . .

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 16 / 20

Bagging and Random Forests in R Boosting

Brief Example

Compute the mean:
mu <- mean(my_pdxTrees_train$Carbon_Sequestration_lb)
mu

[1] 35.47188

Compute residuals:
my_pdxTrees_train_boost <- my_pdxTrees_train %>%

mutate(residuals1 = Carbon_Sequestration_lb - mu)

Fit a new tree
boost_tree_model<- rpart(residuals1 ~ Crown_Base_Height,

data = my_pdxTrees_train_boost,
control = rpart.control(maxdepth = 2))

Predict
predictions<- predict(boost_tree_model, data = my_pdxTrees_test)+mu

And so on. . .

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 16 / 20

Bagging and Random Forests in R Boosting

Boosting Properties

Boosting is similar to random forests: the final prediction is sum of predictions from an
ensemble of models.

• But in Random Forests, all trees are created independently, are of maximum depth,
and contribute equally to the final model.
• In boosting, subsequent trees are are highly dependent on past trees, have minimal
depth, and contribute unequally.

Unlike random forests, boosting is susceptible to over-fitting (since it uses a greedy
algorithm to maximize gradient at each step).
• To remedy, we introduce a shrinkage penalty (like in Ridge Regression/LASSO)

• Instead of adding the full value for a sample to the previous iteration’s predicted value,
only a fraction of the current predicted value is added.

• This fraction is called the learning rate λ, with 0 < λ < 1. (Typical values range from
0.001 to 0.01)

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 17 / 20

Bagging and Random Forests in R Boosting

Boosting Properties

Boosting is similar to random forests: the final prediction is sum of predictions from an
ensemble of models.
• But in Random Forests, all trees are created independently, are of maximum depth,
and contribute equally to the final model.

• In boosting, subsequent trees are are highly dependent on past trees, have minimal
depth, and contribute unequally.

Unlike random forests, boosting is susceptible to over-fitting (since it uses a greedy
algorithm to maximize gradient at each step).
• To remedy, we introduce a shrinkage penalty (like in Ridge Regression/LASSO)

• Instead of adding the full value for a sample to the previous iteration’s predicted value,
only a fraction of the current predicted value is added.

• This fraction is called the learning rate λ, with 0 < λ < 1. (Typical values range from
0.001 to 0.01)

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 17 / 20

Bagging and Random Forests in R Boosting

Boosting Properties

Boosting is similar to random forests: the final prediction is sum of predictions from an
ensemble of models.
• But in Random Forests, all trees are created independently, are of maximum depth,
and contribute equally to the final model.
• In boosting, subsequent trees are are highly dependent on past trees, have minimal
depth, and contribute unequally.

Unlike random forests, boosting is susceptible to over-fitting (since it uses a greedy
algorithm to maximize gradient at each step).
• To remedy, we introduce a shrinkage penalty (like in Ridge Regression/LASSO)

• Instead of adding the full value for a sample to the previous iteration’s predicted value,
only a fraction of the current predicted value is added.

• This fraction is called the learning rate λ, with 0 < λ < 1. (Typical values range from
0.001 to 0.01)

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 17 / 20

Bagging and Random Forests in R Boosting

Boosting Properties

Boosting is similar to random forests: the final prediction is sum of predictions from an
ensemble of models.
• But in Random Forests, all trees are created independently, are of maximum depth,
and contribute equally to the final model.
• In boosting, subsequent trees are are highly dependent on past trees, have minimal
depth, and contribute unequally.

Unlike random forests, boosting is susceptible to over-fitting (since it uses a greedy
algorithm to maximize gradient at each step).

• To remedy, we introduce a shrinkage penalty (like in Ridge Regression/LASSO)
• Instead of adding the full value for a sample to the previous iteration’s predicted value,

only a fraction of the current predicted value is added.
• This fraction is called the learning rate λ, with 0 < λ < 1. (Typical values range from

0.001 to 0.01)

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 17 / 20

Bagging and Random Forests in R Boosting

Boosting Properties

Boosting is similar to random forests: the final prediction is sum of predictions from an
ensemble of models.
• But in Random Forests, all trees are created independently, are of maximum depth,
and contribute equally to the final model.
• In boosting, subsequent trees are are highly dependent on past trees, have minimal
depth, and contribute unequally.

Unlike random forests, boosting is susceptible to over-fitting (since it uses a greedy
algorithm to maximize gradient at each step).
• To remedy, we introduce a shrinkage penalty (like in Ridge Regression/LASSO)

• Instead of adding the full value for a sample to the previous iteration’s predicted value,
only a fraction of the current predicted value is added.

• This fraction is called the learning rate λ, with 0 < λ < 1. (Typical values range from
0.001 to 0.01)

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 17 / 20

Bagging and Random Forests in R Boosting

Boosting Properties

Boosting is similar to random forests: the final prediction is sum of predictions from an
ensemble of models.
• But in Random Forests, all trees are created independently, are of maximum depth,
and contribute equally to the final model.
• In boosting, subsequent trees are are highly dependent on past trees, have minimal
depth, and contribute unequally.

Unlike random forests, boosting is susceptible to over-fitting (since it uses a greedy
algorithm to maximize gradient at each step).
• To remedy, we introduce a shrinkage penalty (like in Ridge Regression/LASSO)

• Instead of adding the full value for a sample to the previous iteration’s predicted value,
only a fraction of the current predicted value is added.

• This fraction is called the learning rate λ, with 0 < λ < 1. (Typical values range from
0.001 to 0.01)

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 17 / 20

Bagging and Random Forests in R Boosting

Boosting Properties

Boosting is similar to random forests: the final prediction is sum of predictions from an
ensemble of models.
• But in Random Forests, all trees are created independently, are of maximum depth,
and contribute equally to the final model.
• In boosting, subsequent trees are are highly dependent on past trees, have minimal
depth, and contribute unequally.

Unlike random forests, boosting is susceptible to over-fitting (since it uses a greedy
algorithm to maximize gradient at each step).
• To remedy, we introduce a shrinkage penalty (like in Ridge Regression/LASSO)

• Instead of adding the full value for a sample to the previous iteration’s predicted value,
only a fraction of the current predicted value is added.

• This fraction is called the learning rate λ, with 0 < λ < 1. (Typical values range from
0.001 to 0.01)

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 17 / 20

Bagging and Random Forests in R Boosting

Boosting in R

We use the gbm function in the gmb package to create Boosted Trees

• For regression problems, we use the argument distribution = "gaussian" and for
classification problems, we use distribution = "bernoulli"

• The argument n.trees controls the number of iterations
• The argument interaction.depth controls the depth of each tree
• The argument shrinkage controlls the learning rate λ

library(gbm)
set.seed(10101)
boosted_tree<-gbm(Carbon_Sequestration_lb ~., my_pdxTrees_train,

distribution = "gaussian",
n.trees=1000,
interaction.depth = 3,
shrinkage = .02)

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 18 / 20

Bagging and Random Forests in R Boosting

Boosting in R

We use the gbm function in the gmb package to create Boosted Trees
• For regression problems, we use the argument distribution = "gaussian" and for
classification problems, we use distribution = "bernoulli"

• The argument n.trees controls the number of iterations
• The argument interaction.depth controls the depth of each tree
• The argument shrinkage controlls the learning rate λ

library(gbm)
set.seed(10101)
boosted_tree<-gbm(Carbon_Sequestration_lb ~., my_pdxTrees_train,

distribution = "gaussian",
n.trees=1000,
interaction.depth = 3,
shrinkage = .02)

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 18 / 20

Bagging and Random Forests in R Boosting

Boosting in R

We use the gbm function in the gmb package to create Boosted Trees
• For regression problems, we use the argument distribution = "gaussian" and for
classification problems, we use distribution = "bernoulli"

• The argument n.trees controls the number of iterations
• The argument interaction.depth controls the depth of each tree
• The argument shrinkage controlls the learning rate λ

library(gbm)
set.seed(10101)
boosted_tree<-gbm(Carbon_Sequestration_lb ~., my_pdxTrees_train,

distribution = "gaussian",
n.trees=1000,
interaction.depth = 3,
shrinkage = .02)

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 18 / 20

Bagging and Random Forests in R Boosting

Boosting in R

We use the gbm function in the gmb package to create Boosted Trees
• For regression problems, we use the argument distribution = "gaussian" and for
classification problems, we use distribution = "bernoulli"

• The argument n.trees controls the number of iterations
• The argument interaction.depth controls the depth of each tree
• The argument shrinkage controlls the learning rate λ

library(gbm)
set.seed(10101)
boosted_tree<-gbm(Carbon_Sequestration_lb ~., my_pdxTrees_train,

distribution = "gaussian",
n.trees=1000,
interaction.depth = 3,
shrinkage = .02)

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 18 / 20

Bagging and Random Forests in R Boosting

Summary Information
summary(boosted_tree)

var rel.inf
DBH DBH 44.3189142
Functional_Type Functional_Type 19.3035576
Crown_Width_EW Crown_Width_EW 17.2013214
Crown_Width_NS Crown_Width_NS 12.3333653
Tree_Height Tree_Height 2.8359298
Condition Condition 2.8316083
Crown_Base_Height Crown_Base_Height 0.8345050
Mature_Size Mature_Size 0.3407984

Mature_Size

Crown_Base_Height

Condition

Tree_Height

Crown_Width_NS

Crown_Width_EW

Functional_Type

DBH

Relative influence

0 10 20 30 40

var rel.inf
DBH DBH 44.3189142
Functional_Type Functional_Type 19.3035576
Crown_Width_EW Crown_Width_EW 17.2013214
Crown_Width_NS Crown_Width_NS 12.3333653
Tree_Height Tree_Height 2.8359298
Condition Condition 2.8316083
Crown_Base_Height Crown_Base_Height 0.8345050
Mature_Size Mature_Size 0.3407984

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 19 / 20

Bagging and Random Forests in R Boosting

Boosted Tree Performance

• How does the boosted tree do vs Random Forest? A pruned tree? A linear model?

results %>% group_by(model) %>% rmse(truth = obs, estimate = preds) %>% arrange(.estimate)

A tibble: 4 x 4
model .metric .estimator .estimate
<chr> <chr> <chr> <dbl>
1 boosted_tree rmse standard 10.2
2 random_forest rmse standard 10.6
3 pruned_tree rmse standard 13.3
4 linear_model rmse standard 17.0

• This behavior is typical. Boosted trees and Random Forests often have comparable
performance, and both tend to be more accurate than other model types

• However, this performance comes at significant cost of interpretability.

• Note that boosted trees have a number of important hyperparameters: n.trees,
interaction.depth, shrinkage.

• How do we find the best values of these hyperparameters?
• Cross-validation!
• But tuning all three parameters by “hand” with rsample is tedious. We need a more

powerful cv engine

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 20 / 20

Bagging and Random Forests in R Boosting

Boosted Tree Performance

• How does the boosted tree do vs Random Forest? A pruned tree? A linear model?
results %>% group_by(model) %>% rmse(truth = obs, estimate = preds) %>% arrange(.estimate)

A tibble: 4 x 4
model .metric .estimator .estimate
<chr> <chr> <chr> <dbl>
1 boosted_tree rmse standard 10.2
2 random_forest rmse standard 10.6
3 pruned_tree rmse standard 13.3
4 linear_model rmse standard 17.0

• This behavior is typical. Boosted trees and Random Forests often have comparable
performance, and both tend to be more accurate than other model types

• However, this performance comes at significant cost of interpretability.

• Note that boosted trees have a number of important hyperparameters: n.trees,
interaction.depth, shrinkage.

• How do we find the best values of these hyperparameters?
• Cross-validation!
• But tuning all three parameters by “hand” with rsample is tedious. We need a more

powerful cv engine

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 20 / 20

Bagging and Random Forests in R Boosting

Boosted Tree Performance

• How does the boosted tree do vs Random Forest? A pruned tree? A linear model?
results %>% group_by(model) %>% rmse(truth = obs, estimate = preds) %>% arrange(.estimate)

A tibble: 4 x 4
model .metric .estimator .estimate
<chr> <chr> <chr> <dbl>
1 boosted_tree rmse standard 10.2
2 random_forest rmse standard 10.6
3 pruned_tree rmse standard 13.3
4 linear_model rmse standard 17.0

• This behavior is typical. Boosted trees and Random Forests often have comparable
performance, and both tend to be more accurate than other model types

• However, this performance comes at significant cost of interpretability.

• Note that boosted trees have a number of important hyperparameters: n.trees,
interaction.depth, shrinkage.

• How do we find the best values of these hyperparameters?
• Cross-validation!
• But tuning all three parameters by “hand” with rsample is tedious. We need a more

powerful cv engine

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 20 / 20

Bagging and Random Forests in R Boosting

Boosted Tree Performance

• How does the boosted tree do vs Random Forest? A pruned tree? A linear model?
results %>% group_by(model) %>% rmse(truth = obs, estimate = preds) %>% arrange(.estimate)

A tibble: 4 x 4
model .metric .estimator .estimate
<chr> <chr> <chr> <dbl>
1 boosted_tree rmse standard 10.2
2 random_forest rmse standard 10.6
3 pruned_tree rmse standard 13.3
4 linear_model rmse standard 17.0

• This behavior is typical. Boosted trees and Random Forests often have comparable
performance, and both tend to be more accurate than other model types

• However, this performance comes at significant cost of interpretability.

• Note that boosted trees have a number of important hyperparameters: n.trees,
interaction.depth, shrinkage.

• How do we find the best values of these hyperparameters?
• Cross-validation!
• But tuning all three parameters by “hand” with rsample is tedious. We need a more

powerful cv engine

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 20 / 20

Bagging and Random Forests in R Boosting

Boosted Tree Performance

• How does the boosted tree do vs Random Forest? A pruned tree? A linear model?
results %>% group_by(model) %>% rmse(truth = obs, estimate = preds) %>% arrange(.estimate)

A tibble: 4 x 4
model .metric .estimator .estimate
<chr> <chr> <chr> <dbl>
1 boosted_tree rmse standard 10.2
2 random_forest rmse standard 10.6
3 pruned_tree rmse standard 13.3
4 linear_model rmse standard 17.0

• This behavior is typical. Boosted trees and Random Forests often have comparable
performance, and both tend to be more accurate than other model types

• However, this performance comes at significant cost of interpretability.

• Note that boosted trees have a number of important hyperparameters: n.trees,
interaction.depth, shrinkage.

• How do we find the best values of these hyperparameters?
• Cross-validation!
• But tuning all three parameters by “hand” with rsample is tedious. We need a more

powerful cv engine

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 20 / 20

Bagging and Random Forests in R Boosting

Boosted Tree Performance

• How does the boosted tree do vs Random Forest? A pruned tree? A linear model?
results %>% group_by(model) %>% rmse(truth = obs, estimate = preds) %>% arrange(.estimate)

A tibble: 4 x 4
model .metric .estimator .estimate
<chr> <chr> <chr> <dbl>
1 boosted_tree rmse standard 10.2
2 random_forest rmse standard 10.6
3 pruned_tree rmse standard 13.3
4 linear_model rmse standard 17.0

• This behavior is typical. Boosted trees and Random Forests often have comparable
performance, and both tend to be more accurate than other model types

• However, this performance comes at significant cost of interpretability.

• Note that boosted trees have a number of important hyperparameters: n.trees,
interaction.depth, shrinkage.

• How do we find the best values of these hyperparameters?

• Cross-validation!
• But tuning all three parameters by “hand” with rsample is tedious. We need a more

powerful cv engine

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 20 / 20

Bagging and Random Forests in R Boosting

Boosted Tree Performance

• How does the boosted tree do vs Random Forest? A pruned tree? A linear model?
results %>% group_by(model) %>% rmse(truth = obs, estimate = preds) %>% arrange(.estimate)

A tibble: 4 x 4
model .metric .estimator .estimate
<chr> <chr> <chr> <dbl>
1 boosted_tree rmse standard 10.2
2 random_forest rmse standard 10.6
3 pruned_tree rmse standard 13.3
4 linear_model rmse standard 17.0

• This behavior is typical. Boosted trees and Random Forests often have comparable
performance, and both tend to be more accurate than other model types

• However, this performance comes at significant cost of interpretability.

• Note that boosted trees have a number of important hyperparameters: n.trees,
interaction.depth, shrinkage.

• How do we find the best values of these hyperparameters?
• Cross-validation!

• But tuning all three parameters by “hand” with rsample is tedious. We need a more
powerful cv engine

Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 20 / 20

Bagging and Random Forests in R Boosting

Boosted Tree Performance

• How does the boosted tree do vs Random Forest? A pruned tree? A linear model?
results %>% group_by(model) %>% rmse(truth = obs, estimate = preds) %>% arrange(.estimate)

A tibble: 4 x 4
model .metric .estimator .estimate
<chr> <chr> <chr> <dbl>
1 boosted_tree rmse standard 10.2
2 random_forest rmse standard 10.6
3 pruned_tree rmse standard 13.3
4 linear_model rmse standard 17.0

• This behavior is typical. Boosted trees and Random Forests often have comparable
performance, and both tend to be more accurate than other model types

• However, this performance comes at significant cost of interpretability.

• Note that boosted trees have a number of important hyperparameters: n.trees,
interaction.depth, shrinkage.

• How do we find the best values of these hyperparameters?
• Cross-validation!
• But tuning all three parameters by “hand” with rsample is tedious. We need a more

powerful cv engine
Nate Wells (Math 243: Stat Learning) Bagging and Random Forests November 15th, 2021 20 / 20

	Bagging and Random Forests in R
	Boosting

