Bagging and Random Forests

Nate Wells

Math 243: Stat Learning

November 15th, 2021

Bagging	Bagging and Random Forests in R

Outline

In today's class, we will...

- Introduce ensemble modeling as means of improving low accuracy models
- Discuss bagging and random forests as methods for reducing variance in decision trees
- Implement random forests in R

Bagging and Random Forests in R 0000000

Section 1

Ensemble Models

Nate Wells (Math 243: Stat Learning)

• Who Wants to Be a Millionaire is a television gameshow that debuted in the 1990s and in which contestants answer a series of increasingly difficult multiple choice questions in order to win the grand prize of \$1,000,000.

Ensemble Models	Bagging	Bagging and Random Forests in R
00000		

- The original show included 3 "lifeline" options contestants could use to answer questions:
 - 50:50: Two randomly selected incorrect answers are eliminated
 - Phone a Friend: The contestant calls a friend and is given 30 seconds to discuss
 - Ask the Audience: Audience members each vote on the answer they think is correct

Ensemble Models	Bagging	Bagging and Random Forests in R
00000		

- The original show included 3 "lifeline" options contestants could use to answer questions:
 - 50:50: Two randomly selected incorrect answers are eliminated
 - Phone a Friend: The contestant calls a friend and is given 30 seconds to discuss
 - Ask the Audience: Audience members each vote on the answer they think is correct

• Which lifeline has the highest chance of producing the correct answer?

Ensemble Models	Bagging	Bagging and Random Forests in R
00000		

- The original show included 3 "lifeline" options contestants could use to answer questions:
 - 50:50: Two randomly selected incorrect answers are eliminated
 - Phone a Friend: The contestant calls a friend and is given 30 seconds to discuss
 - Ask the Audience: Audience members each vote on the answer they think is correct

• Which lifeline has the highest chance of producing the correct answer?

Ensemble Models	Bagging	Bagging and Random Forests in R
00000		

- The original show included 3 "lifeline" options contestants could use to answer questions:
 - 50:50: Two randomly selected incorrect answers are eliminated
 - Phone a Friend: The contestant calls a friend and is given 30 seconds to discuss
 - Ask the Audience: Audience members each vote on the answer they think is correct

• Which lifeline has the highest chance of producing the correct answer?

Ensemble Models	Bagging	Bagging and Random Forests in R
00000		

• Suppose we have *m* different models to predict *Y* based on *X*₁,..., *X_n*. Suppose \hat{Y}_i is the prediction made by the *i*th model.

Ensemble Models	Bagging	Bagging and Random Forests in R
00000		

- Suppose we have *m* different models to predict *Y* based on *X*₁,..., *X_n*. Suppose \hat{Y}_i is the prediction made by the *i*th model.
- A simple ensemble model makes a prediction \hat{Y} as the weighted average of the predictions from each model:

$$\hat{Y} = w_1 \hat{Y}_1 + \dots + w_m \hat{Y}_m$$
 where $w_1 + \dots w_m = 1$, $w_i \ge 0$

Ensemble Models	Bagging	Bagging and Random Forests in R
00000		

- Suppose we have *m* different models to predict *Y* based on *X*₁,..., *X_n*. Suppose \hat{Y}_i is the prediction made by the *i*th model.
- A simple ensemble model makes a prediction \hat{Y} as the weighted average of the predictions from each model:

$$\hat{Y} = w_1 \hat{Y}_1 + \cdots + w_m \hat{Y}_m$$
 where $w_1 + \ldots w_m = 1$, $w_i \ge 0$

• Advantages of ensemble models?

Ensemble Models	Bagging	Bagging and Random Forests in R
00000		

- Suppose we have *m* different models to predict *Y* based on *X*₁,..., *X_n*. Suppose \hat{Y}_i is the prediction made by the *i*th model.
- A simple ensemble model makes a prediction \hat{Y} as the weighted average of the predictions from each model:

$$\hat{Y} = w_1 \, \hat{Y}_1 + \dots + w_m \, \hat{Y}_m \qquad \mathrm{where} \ w_1 + \dots w_m = 1, \quad w_i \geq 0$$

- Advantages of ensemble models?
 - Significantly more flexible than a single model
 - More efficient than single model
 - More resilient against model-building bias

Ensemble Models	Bagging	Bagging and Random Forests in R
00000		

- Suppose we have *m* different models to predict *Y* based on *X*₁,..., *X_n*. Suppose \hat{Y}_i is the prediction made by the *i*th model.
- A simple ensemble model makes a prediction \hat{Y} as the weighted average of the predictions from each model:

$$\hat{Y} = w_1 \hat{Y}_1 + \dots + w_m \hat{Y}_m$$
 where $w_1 + \dots w_m = 1$, $w_i \ge 0$

- Advantages of ensemble models?
 - Significantly more flexible than a single model
 - More efficient than single model
 - More resilient against model-building bias
- Disadvantages?

Ensemble Models	Bagging	Bagging and Random Forests in R
00000		

- Suppose we have *m* different models to predict *Y* based on *X*₁,..., *X_n*. Suppose \hat{Y}_i is the prediction made by the *i*th model.
- A simple ensemble model makes a prediction \hat{Y} as the weighted average of the predictions from each model:

$$\hat{Y} = w_1 \hat{Y}_1 + \dots + w_m \hat{Y}_m$$
 where $w_1 + \dots w_m = 1$, $w_i \ge 0$

- Advantages of ensemble models?
 - Significantly more flexible than a single model
 - More efficient than single model
 - More resilient against model-building bias
- Disadvantages?
 - Making predictions is more computationally expensive
 - Favors models with low test time
 - Diminishing returns on the number models that can be incorporated in ensemble

Section 2

Bagging

Nate Wells (Math 243: Stat Learning)

Ensemble Models	Bagging	Random Forests	Bagging and Random Forests in R
00000	0●0000000	0000	

Suppose we only have one training set, but still want to build an ensemble of regression tree models. How can we do it?

Ensemble Models	Bagging	Random Forests	Bagging and Random Forests in R
00000	0●0000000	0000	

Suppose we only have one training set, but still want to build an ensemble of regression tree models. How can we do it?

• Bagging (Bootstrap aggregation) was one of the earliest ensemble techniques

Ensemble Models	Bagging	Random Forests	Bagging and Random Forests in R
00000	○●○○○○○○○	0000	0000000

Suppose we only have one training set, but still want to build an ensemble of regression tree models. How can we do it?

• Bagging (Bootstrap aggregation) was one of the earliest ensemble techniques

To create a bagged model, create many bootstrap samples from the original training set, and fit a decision tree to each. Average the resulting predictions.

Ensemble Models	Bagging	Random Forests	Bagging and Random Forests in R
00000	○●○○○○○○○	0000	0000000

Suppose we only have one training set, but still want to build an ensemble of regression tree models. How can we do it?

• Bagging (Bootstrap aggregation) was one of the earliest ensemble techniques

To create a bagged model, create many bootstrap samples from the original training set, and fit a decision tree to each. Average the resulting predictions.

Ensemble Models	Bagging	Random Forests	Bagging and Random Forests in R
00000	0●0000000	0000	0000000

Suppose we only have one training set, but still want to build an ensemble of regression tree models. How can we do it?

• Bagging (Bootstrap aggregation) was one of the earliest ensemble techniques

To create a bagged model, create many bootstrap samples from the original training set, and fit a decision tree to each. Average the resulting predictions.

- Recall that decision trees tend to have high variance. But averaging the results of independent (or weakly dependent) variables decreases variance
 - Think about the Central Limit Theorem

Ensemble Models	Bagging	Random Forests	Bagging and Random Forests in R
00000	0●0000000	0000	0000000

Suppose we only have one training set, but still want to build an ensemble of regression tree models. How can we do it?

• Bagging (Bootstrap aggregation) was one of the earliest ensemble techniques

To create a bagged model, create many bootstrap samples from the original training set, and fit a decision tree to each. Average the resulting predictions.

- Recall that decision trees tend to have high variance. But averaging the results of independent (or weakly dependent) variables decreases variance
 - Think about the Central Limit Theorem
- Unlike a single tree model, we do not prune (we instead control variance by averaging)

Bagging	Bagging and Random Forests in R
0000000	

• Recall from a previous homework that an individual observation has probability $1 - e^{-1} \approx 0.632$ of appearing in a bootstrap sample.

Bagging	Bagging and Random Forests in R
0000000	

- Recall from a previous homework that an individual observation has probability $1 e^{-1} \approx 0.632$ of appearing in a bootstrap sample.
- For each bootstrap, approximately 1/3 of observations are not included (called *out-of-bag* observations)

Bagging	Bagging and Random Forests in R
00000000	

- Recall from a previous homework that an individual observation has probability $1 e^{-1} \approx 0.632$ of appearing in a bootstrap sample.
- For each bootstrap, approximately 1/3 of observations are not included (called *out-of-bag* observations)
- The out-of-bag observations can be used as a natural validation set for the bootstrap model.

Bagging	Bagging and Random Forests in R
00000000	

- Recall from a previous homework that an individual observation has probability $1 e^{-1} \approx 0.632$ of appearing in a bootstrap sample.
- For each bootstrap, approximately 1/3 of observations are not included (called *out-of-bag* observations)
- The out-of-bag observations can be used as a natural validation set for the bootstrap model.
- We get an overall estimate of test MSE for the bagged model by averaging the MSE of each bootstrap model on its out-of-bag observations

Bagging	Bagging and Random Forests in R
00000000	

A Bag of Trees

We return to the pdxTrees data set, this time expanding both our data set size and number of predictors:

names(my_pdxTrees)

```
## [1] "DBH"
                                    "Condition"
## [3] "Tree_Height"
                                   "Crown Width NS"
## [5] "Crown Width EW"
                                   "Crown_Base_Height"
                                   "Mature_Size"
## [7] "Functional Type"
## [9] "Carbon_Sequestration_lb"
dim(mv pdxTrees)
## [1] 3015
                9
set.seed(1)
library(rsample)
my pdxTrees split <- initial split(my pdxTrees )</pre>
my_pdxTrees_train <- training(my_pdxTrees_split)</pre>
my pdxTrees test <- testing(my pdxTrees split)</pre>
```

Bagging	Bagging and Random Forests in R
00000000	

A Bag of Trees

We return to the pdxTrees data set, this time expanding both our data set size and number of predictors:

names(my_pdxTrees)

```
## [1] "DBH"
                                   "Condition"
## [3] "Tree_Height"
                                   "Crown Width NS"
## [5] "Crown Width EW"
                                   "Crown_Base_Height"
## [7] "Functional Type"
                                    "Mature Size"
## [9] "Carbon Sequestration 1b"
dim(mv pdxTrees)
## [1] 3015
                9
set.seed(1)
library(rsample)
my_pdxTrees_split <- initial_split(my_pdxTrees )</pre>
my_pdxTrees_train <- training(my_pdxTrees_split)</pre>
my pdxTrees test <- testing(my pdxTrees split)</pre>
```

• Can we improve on our previous model predicting Carbon_Sequestration_lb, now using more data and more predictors?

Ensemble	Models
00000	

Bagging and Random Forests in R 0000000

Bagged pdXTrees

• Let's get a few bootstrap samples using rsample:

Ensemble	Models
00000	

Bagging and Random Forests in R 0000000

Bagged pdXTrees

```
• Let's get a few bootstrap samples using rsample:
library(rsample)
set.seed(1115)
pdx_bootstrap <- bootstraps(my_pdxTrees_train, times = 4)</pre>
```

Bagging and Random Forests in R 0000000

Bagged pdXTrees

```
• Let's get a few bootstrap samples using rsample:
library(rsample)
set.seed(1115)
pdx_bootstrap <- bootstraps(my_pdxTrees_train, times = 4)</pre>
```

• And now build trees on each:

Bagging and Random Forests in R 0000000

Bagged pdXTrees

```
• Let's get a few bootstrap samples using rsample:
library(rsample)
set.seed(1115)
pdx_bootstrap <- bootstraps(my_pdxTrees_train, times = 4)</pre>
```

• And now build trees on each:

```
library(rpart)
get_tree <- function(split){
    bootstrap_sample <- analysis(split)
    model <- rpart(Carbon_Sequestration_lb ~., data = bootstrap_sample)
}
pdx_bootstrap$model <- map(pdx_bootstrap$splits, get_tree)</pre>
```

00000	

Bagging 00000●000 Random Forests 0000 Bagging and Random Forests in R 0000000

A few trees

Ensemble Models	Bagging	Random Forests	Bagging and Random Forests in R
00000	000000●00	0000	

• Let's get predictions for each bootstrap:

Ensemble Models	Bagging	Random Forests	Bagging and Random Forests in R
00000	000000●00	0000	

```
• Let's get predictions for each bootstrap:
get_predictions <- function(model){
    predictions <- predict(model, my_pdxTrees_test)
    tibble(obs = my_pdxTrees_test$Carbon_Sequestration_lb, preds = predictions)
}
pdx_bootstrap$predictions <- map(pdx_bootstrap$model, get_predictions)</pre>
```

Ensemble Models	Bagging	Random Forests	Bagging and Random Forests in R
00000	000000●00	0000	0000000

```
• Let's get predictions for each bootstrap:
get_predictions <- function(model){
    predictions <- predict(model, my_pdxTrees_test)
    tibble(obs = my_pdxTrees_test$Carbon_Sequestration_lb, preds = predictions)
}
pdx_bootstrap$predictions <- map(pdx_bootstrap$model, get_predictions)</pre>
```

And calculate rmse on each using yardstick

Ensemble Models	Bagging	Random Forests	Bagging and Random Forests in R
00000	000000●00	0000	

```
• Let's get predictions for each bootstrap:
get_predictions <- function(model){
    predictions <- predict(model, my_pdxTrees_test)
    tibble(obs = my_pdxTrees_test$Carbon_Sequestration_lb, preds = predictions)
}
pdx_bootstrap$predictions <- map(pdx_bootstrap$model, get_predictions)</pre>
```

And calculate rmse on each using yardstick

```
library(yardstick)
results <- map_dfr(pdx_bootstrap$predictions, rmse, obs, preds)
results</pre>
```

```
## # A tibble: 4 x 3
## .metric .estimator .estimate
## <chr> <chr> <chr> <dbl>
## 1 rmse standard 14.0
## 2 rmse standard 14.3
## 4 rmse standard 13.1
mean(results$.estimate)
```

```
## [1] 13.89024
```
Bagging	Bagging and Random Forests in R
000000000	

• How do individual tree predictions compare?

	Bagging		Bagging and Random Forests in R
00000	000000000	0000	000000

• How do individual tree predictions compare?

```
## # A tibble: 6 x 5
## # Rowwise:
    tree1 tree2 tree3 tree4 bagged
##
##
    49.0 30.4 52.2 32.5
                        41.0
## 1
## 2
    34.7 38.0 43.3 32.8
                         37.2
## 3
    56.8 84.0
              67.6
                   72.9
                         70.3
     30.6 46.6
              38.8 37.8
                         38.4
## 4
## 5
    56.8 65.7 67.6 72.9
                         65.7
## 6
    56.8 84.0 89.1 72.9
                         75.7
```

Bagging	Bagging and Random Forests in R
000000000	

• How do individual tree predictions compare?

```
## # A tibble: 6 x 5
## # Rowwise:
    tree1 tree2 tree3 tree4 bagged
##
    <dbl> <dbl> <dbl> <dbl> <dbl>
                             <dbl>
##
## 1
     49.0 30.4 52.2 32.5
                              41.0
     34.7 38.0 43.3 32.8
                              37.2
## 2
## 3
     56.8 84.0
                 67.6
                      72.9
                              70.3
     30.6 46.6
                 38.8 37.8
## 4
                              38.4
## 5
     56.8 65.7
                 67.6 72.9
                              65.7
## 6
     56.8 84.0 89.1 72.9
                              75.7
```

• How does the bagged model RMSE compare to each individual tree's RMSE?

	Bagging		Bagging and Random Forests in R
00000	000000000	0000	000000

• How do individual tree predictions compare?

```
## # A tibble: 6 x 5
## # Rowwise:
##
                                     tree1 tree2 tree3 tree4 bagged
                                     <dbl> <dbl > <dd > <dbl > <dd > <dbl > <dbl > <dbl > <dbl > <d
                                                                                                                                                                                                                                      <db1>
 ##
## 1
                                       49.0 30.4 52.2 32.5
                                                                                                                                                                                                                                            41.0
                                           34.7 38.0 43.3 32.8
                                                                                                                                                                                                                                              37.2
## 2
## 3
                                           56.8 84.0
                                                                                                                                        67.6
                                                                                                                                                                                72.9
                                                                                                                                                                                                                                              70.3
## 4
                                           30.6 46.6
                                                                                                                                        38.8 37.8
                                                                                                                                                                                                                                              38.4
## 5
                                           56.8 65.7 67.6 72.9
                                                                                                                                                                                                                                              65.7
## 6
                                          56.8 84.0 89.1 72.9 75.7
```

How does the bagged model RMSE compare to each individual tree's RMSE?

```
## # A tibble: 5 x 4
    model
          metric estimator estimate
##
    <chr> <chr>
                   <chr>>
                                 <dbl>
##
## 1 tree 1 rmse standard
                                  14.0
## 2 tree 2 rmse standard
                                  14.3
## 3 tree 3 rmse standard
                                  14.3
## 4 tree 4 rmse standard
                                  13.1
## 5 bagged rmse
                 standard
                                  12.3
```

	Bagging		Bagging and Random Forests in R
00000	000000000	0000	000000

• How do individual tree predictions compare?

```
## # A tibble: 6 x 5
## # Rowwise:
    tree1 tree2 tree3 tree4 bagged
##
    <dbl> <dbl> <dbl> <dbl> <dbl>
                             <dbl>
##
     49.0 30.4 52.2 32.5
                              41.0
## 1
     34.7 38.0 43.3 32.8
                              37.2
## 2
## 3
     56.8 84.0
                 67.6
                      72.9
                              70.3
## 4
     30.6 46.6 38.8 37.8
                              38.4
## 5
     56.8 65.7 67.6 72.9
                              65.7
## 6
     56.8 84.0 89.1 72.9
                              75.7
```

• How does the bagged model RMSE compare to each individual tree's RMSE?

##	#	A tib	b]	le: 5 x 4	1	
##		model	_	.metric	.estimator	.estimate
##		<chr></chr>	•	<chr></chr>	<chr></chr>	<dbl></dbl>
##	1	tree	1	rmse	standard	14.0
##	2	tree	2	rmse	standard	14.3
##	3	tree	3	rmse	standard	14.3
##	4	tree	4	rmse	standard	13.1
##	5	bagge	ed	rmse	standard	12.3

 Note that the RMSE for the bagged tree is NOT simply the average RMSE. It is significantly *lower*!

Bagging	Bagging and Random Forests in R
00000000	

The more trees the merrier?

If 4 trees improved performance over 1, what if we bagged 10 trees? 100?

Bagging	Bagging and Random Forests in R
00000000	

The more trees the merrier?

If 4 trees improved performance over 1, what if we bagged 10 trees? 100?

- · Greatest gains by adding a small number of additional trees
- Moderately small gains thereafter

Section 3

Random Forests

Nate Wells (Math 243: Stat Learning)

	Bagging	Random Forests	Bagging and Random Forests in R
00000	00000000	0000	000000

	Bagging	Random Forests	Bagging and Random Forests in R
00000	00000000	0000	000000

Suppose we have m ensemble models built from the same data set and that it turns out that all m models are very similar.

• Do we expect the ensemble model to have high or low variance?

	Bagging	Random Forests	Bagging and Random Forests in R
00000	00000000	0000	000000

- Do we expect the ensemble model to have high or low variance?
 - High variance (since the models are very correlated)

	Bagging	Random Forests	Bagging and Random Forests in R
00000	00000000	0000	000000

- Do we expect the ensemble model to have high or low variance?
 - High variance (since the models are very correlated)
- When bagging trees, if one predictor accounts for large amount of deviation in the response, it will usually be selected as the first split (regardless of the bootstrap sample used)

	Bagging	Random Forests	Bagging and Random Forests in R
00000	00000000	0000	000000

- Do we expect the ensemble model to have high or low variance?
 - High variance (since the models are very correlated)
- When bagging trees, if one predictor accounts for large amount of deviation in the response, it will usually be selected as the first split (regardless of the bootstrap sample used)
- To artificially increase the variety among trees, we randomly restrict which predictors can be used at each split point.

	Bagging	Random Forests	Bagging and Random Forests in R
00000	00000000	0000	000000

- Do we expect the ensemble model to have high or low variance?
 - High variance (since the models are very correlated)
- When bagging trees, if one predictor accounts for large amount of deviation in the response, it will usually be selected as the first split (regardless of the bootstrap sample used)
- To artificially increase the variety among trees, we randomly restrict which predictors can be used at each split point.
- Although counterintuitive, this restriction tends to increase accuracy of the ensemble by breaking correlations among the participant trees

Bagging	Random Forests	Bagging and Random Forests in R
	0000	

To create a random forest:

- Select the number of models m to build and a number of predictors k to use at each step t
- Ø Generate a bootstrap sample for each model
- Build a tree on the bootstrap sample where at each step, a random selection of k of the p predictors can be used (independent of prior predictors selected)
- Aggregate the models to create an ensemble model.

Bagging	Random Forests	Bagging and Random Forests in R
	0000	

To create a random forest:

- Select the number of models m to build and a number of predictors k to use at each step t
- Ø Generate a bootstrap sample for each model
- Build a tree on the bootstrap sample where at each step, a random selection of k of the p predictors can be used (independent of prior predictors selected)
- Ø Aggregate the models to create an ensemble model.

Advantages of the random forest?

Bagging	Random Forests	Bagging and Random Forests in R
	0000	

To create a random forest:

- Select the number of models m to build and a number of predictors k to use at each step t
- Ø Generate a bootstrap sample for each model
- Build a tree on the bootstrap sample where at each step, a random selection of k of the p predictors can be used (independent of prior predictors selected)
- **4** Aggregate the models to create an ensemble model.

Advantages of the random forest?

- Individual models are less correlated, so ensemble has lower variance
- Each tree is quicker to build (why?)

Bagging	Random Forests	Bagging and Random Forests in R
	0000	

To create a random forest:

- Select the number of models m to build and a number of predictors k to use at each step t
- Ø Generate a bootstrap sample for each model
- Build a tree on the bootstrap sample where at each step, a random selection of k of the p predictors can be used (independent of prior predictors selected)
- Aggregate the models to create an ensemble model.

Advantages of the random forest?

- Individual models are less correlated, so ensemble has lower variance
- Each tree is quicker to build (why?)

Disadvantages?

Bagging	Random Forests	Bagging and Random Forests in R
	0000	

To create a random forest:

- Select the number of models m to build and a number of predictors k to use at each step t
- Ø Generate a bootstrap sample for each model
- Build a tree on the bootstrap sample where at each step, a random selection of k of the p predictors can be used (independent of prior predictors selected)
- Ø Aggregate the models to create an ensemble model.

Advantages of the random forest?

- · Individual models are less correlated, so ensemble has lower variance
- Each tree is quicker to build (why?)

Disadvantages?

- Difficult to interpret
- Theoretically properties less well-studied (possible Senior Thesis project!)

Bagging	Random Forests	Bagging and Random Forests in R
	0000	

Hand-drawn Example

Bagging and Random Forests in R

Section 4

Bagging and Random Forests in R

Bagging	Bagging and Random Forests in R
	000000

Random Forest in R

• To create both bagged trees and random forests, we use the randomForest function in the randomForest package in R:

```
library(randomForest)
rfmodel <- randomForest(Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train)
rfmodel</pre>
```

```
##
## Call:
## randomForest(formula = Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train)
## Type of random forest: regression
## Number of trees: 500
## No. of variables tried at each split: 2
##
## Mean of squared residuals: 112.2864
## % Var explained: 85.74
```

Bagging	Bagging and Random Forests in R
	000000

We can control how many trees are generated with ntree and the number of predictors at each split with mtry

Bagging	Bagging and Random Forests in R
	000000

We can control how many trees are generated with ntree and the number of predictors at each split with mtry

• By default, randomForest uses p/3 predictors for regression and \sqrt{p} predictors for classification

Bagging	Bagging and Random Forests in R
	000000

We can control how many trees are generated with ntree and the number of predictors at each split with mtry

• By default, randomForest uses p/3 predictors for regression and \sqrt{p} predictors for classification

rfmodel2

##

```
## Call:
## randomForest(formula = Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train, ntree = 1
## Type of random forest: regression
## Number of trees: 10
## No. of variables tried at each split: 5
##
## Mean of squared residuals: 106.4475
## % Var explained: 86.48
```

Bagging	Bagging and Random Forests in R
	000000

We can control how many trees are generated with ntree and the number of predictors at each split with mtry

• By default, random Forest uses p/3 predictors for regression and \sqrt{p} predictors for classification

rfmodel2

##

```
## Call:
## randomForest(formula = Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train, ntree = 1
## Type of random forest: regression
## Number of trees: 10
## No. of variables tried at each split: 5
##
## Mean of squared residuals: 106.4475
## % Var explained: 86.48
```

How can we create a bagged model using the randomForest function?

Bagging	Bagging and Random Forests in R
	000000

We can control how many trees are generated with ntree and the number of predictors at each split with mtry

• By default, randomForest uses p/3 predictors for regression and \sqrt{p} predictors for classification

rfmodel2

##

```
## Call:
## randomForest(formula = Carbon_Sequestration_lb ~ ., data = my_pdxTrees_train, ntree = 1
## Type of random forest: regression
## Number of trees: 10
## No. of variables tried at each split: 5
##
## Mean of squared residuals: 106.4475
## % Var explained: 86.48
```

How can we create a bagged model using the randomForest function?

• Set mtry= p, where p is the total number predictors available

Bagging	Bagging and Random Forests in R
	0000000

Making predictions

```
• So you have your randomForest model. How do you make predictions?
my_preds<- predict(rfmodel, my_pdxTrees_test)
results <- data.frame(obs = my_pdxTrees_test$Carbon_Sequestration_lb, preds = my_preds)
results %>% head()
## obs preds
## 1 39.0 38.85781
## 2 110.2 66.09302
## 3 61.2 75.53011
## 4 34.0 33.41863
## 5 75.4 51.02538
```

6 96.1 82.35864

Bagging	Bagging and Random Forests in R
	0000000

Bagging and Random Forests increase prediction accuracy by reducing variance of the model.

Bagging	Bagging and Random Forests in R
	0000000

Bagging and Random Forests increase prediction accuracy by reducing variance of the model.

• But the cost comes in interpretability We no longer have a single decision tree to follow to reach our prediction.

Bagging	Bagging and Random Forests in R
	0000000

Bagging and Random Forests increase prediction accuracy by reducing variance of the model.

- But the cost comes in interpretability We no longer have a single decision tree to follow to reach our prediction.
- How can we determine which predictors are most influential?

Bagging	Bagging and Random Forests in R
	0000000

Bagging and Random Forests increase prediction accuracy by reducing variance of the model.

- But the cost comes in interpretability We no longer have a single decision tree to follow to reach our prediction.
- How can we determine which predictors are most influential?

One possibility is to record the total amount of RSS/Purity that is decreased due to splits of the given predictor, averaged across all trees in the random forest.

Bagging and Random Forests in R 0000000

Importance in R

importance(rfmodel)

##		IncNodePurity
##	DBH	507862.05
##	Condition	54821.17
##	Tree_Height	208750.74
##	Crown_Width_NS	309930.48
##	Crown_Width_EW	325846.81
##	Crown_Base_Height	69137.26
##	Functional_Type	170538.17
##	Mature_Size	42785.73

Bagging and Random Forests in R 0000000

Importance in R

importance(rfmodel)

##		IncNodePurity
##	DBH	507862.05
##	Condition	54821.17
##	Tree_Height	208750.74
##	Crown_Width_NS	309930.48
##	Crown_Width_EW	325846.81
##	Crown_Base_Height	69137.26
##	Functional_Type	170538.17
##	Mature_Size	42785.73

varImpPlot(rfmodel)

varImpPlot(rfmodel)

Bagging and Random Forests in R 0000000

Importance in R

imj	<pre>importance(rfmodel)</pre>			
##		IncNodePurity		
##	DBH	507862.05		
##	Condition	54821.17		
##	Tree_Height	208750.74		
##	Crown_Width_NS	309930.48		
##	Crown_Width_EW	325846.81		
##	Crown_Base_Height	69137.26		
##	Functional_Type	170538.17		
##	Mature_Size	42785.73		

ſ	rfmodel
DBH	
Crown_Width_EW	o
Crown_Width_NS	0
Tree_Height	•
Functional_Type	o
Crown_Base_Height	o
Condition	0
Mature_Size	0

- For regression trees, node impurity is calculated using RSS.
- For classification trees, node impurity is calculated using Gini Index.

	Bagging		Bagging and Random Forests in R
00000	00000000	0000	000000

Comparison of Bagged Trees versus Random Forests

