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Outline

In today's class, we will. ..
® Discuss classification trees for classification problems.

® Build handmade classification tree models
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Classification Trees
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Classification Trees

Classification trees are very similar to regression trees, except the terminal nodes predict
levels of a categorical variable, rather than values of a quantitative variable
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Classification Trees

Classification trees are very similar to regression trees, except the terminal nodes predict
levels of a categorical variable, rather than values of a quantitative variable

® To grow a classification tree, we need to make cuts based on a metric other than RSS
(why?)
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Classification Trees

Classification trees are very similar to regression trees, except the terminal nodes predict
levels of a categorical variable, rather than values of a quantitative variable

® To grow a classification tree, we need to make cuts based on a metric other than RSS
(why?)

® For each split candidate, we average the value of the metric on the two proposed
subregions, and select the split that minimizes the average value of the metric.
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Classification Trees

Classification trees are very similar to regression trees, except the terminal nodes predict
levels of a categorical variable, rather than values of a quantitative variable

® To grow a classification tree, we need to make cuts based on a metric other than RSS
(why?)

® For each split candidate, we average the value of the metric on the two proposed
subregions, and select the split that minimizes the average value of the metric.

® The most natural choice is to use Classification Error Rate E (i.e. proportion of obs.
in region not in most common class)

E =1— max«(pmk) where pmx = prop. obs. in region m in class k
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Classification Trees

Classification trees are very similar to regression trees, except the terminal nodes predict
levels of a categorical variable, rather than values of a quantitative variable

® To grow a classification tree, we need to make cuts based on a metric other than RSS
(why?)

® For each split candidate, we average the value of the metric on the two proposed
subregions, and select the split that minimizes the average value of the metric.

® The most natural choice is to use Classification Error Rate E (i.e. proportion of obs.
in region not in most common class)
E =1— max«(pmk) where pmx = prop. obs. in region m in class k

® But because of the greedy algorithm used to split trees, E tends to overfit to noise in
the training data
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Other Decision Metric

Two common alternatives for decision metric:
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Other Decision Metric

Two common alternatives for decision metric:

® The Gini index G:

K
G = Z Pmk(1 — Pmk)  where pmx = prop. obs. in region m in class k
i=1
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Other Decision Metric

Two common alternatives for decision metric:

® The Gini index G:

K
G = Z Pmk(1 — Pmk)  where pmx = prop. obs. in region m in class k
i=1

® |t measures the rate that a random element would be incorrectly labeled if it was
randomly labeled according to the distribution of labels in the region
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Other Decision Metric

Two common alternatives for decision metric:

® The Gini index G:

K
G = Z Pmk(1 — Pmk)  where pmx = prop. obs. in region m in class k
i=1

® |t measures the rate that a random element would be incorrectly labeled if it was
randomly labeled according to the distribution of labels in the region

® The Gini index is small if all p,, are close to 0 or 1.

® The information or entropy D:

K
D=-— Z pmi log, Pmk where pmi = prop. obs. in region m in class k
i=1
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Other Decision Metric

Two common alternatives for decision metric:

® The Gini index G:

K
G = Z Pmk(1 — Pmk)  where pmx = prop. obs. in region m in class k
i=1

® |t measures the rate that a random element would be incorrectly labeled if it was
randomly labeled according to the distribution of labels in the region

® The Gini index is small if all p,, are close to 0 or 1.

® The information or entropy D:

K
D=-— Z pmi log, Pmk where pmi = prop. obs. in region m in class k
i=1

® [t measures the average amount of information conveyed by knowing the region of an
observation.
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Other Decision Metric

Two common alternatives for decision metric:

® The Gini index G:

K
G = Z Pmk(1 — Pmk)  where pmx = prop. obs. in region m in class k
i=1

® |t measures the rate that a random element would be incorrectly labeled if it was
randomly labeled according to the distribution of labels in the region

® The Gini index is small if all p,, are close to 0 or 1.

® The information or entropy D:

K
D=-— Z pmi log, Pmk where pmi = prop. obs. in region m in class k
i=1

® [t measures the average amount of information conveyed by knowing the region of an
observation.

® The entropy is small if all p,, are close to 0 or 1.
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Metrics

® The following plot demonstrates sensitivity of metrics E, G, D to changes in class
proportion p.

05
0.4
Metric
03
= Error
2
— Gini
Eo2
~— Information
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P
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Metrics

® The following plot demonstrates sensitivity of metrics E, G, D to changes in class
proportion p.

0.5

Metric
03
= Error
2
— Gini
Eo2
~— Information

0.00 0.25 0.50 0.75

® The Gini Index and Information are both more sensitive to changes in node purity
than Error (represented by convexity of curves)

November 12th, 2021
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Metrics

® The following plot demonstrates sensitivity of metrics E, G, D to changes in class
proportion p.
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~— Information
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® The Gini Index and Information are both more sensitive to changes in node purity
than Error (represented by convexity of curves)

® Suppose we have an initial class balance of [300, 500] and make a single split into nodes
[0,100] and [300,400]

® The misclassification rate is constant, although node purity has increased
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Dealing with Categorical Variables

Both regression and classification trees can easily hand either quantitative or binary
categorical variables.
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Dealing with Categorical Variables

Both regression and classification trees can easily hand either quantitative or binary
categorical variables.

® But with some modification, trees can also be used with multi-level categorical
variables.
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Dealing with Categorical Variables

Both regression and classification trees can easily hand either quantitative or binary
categorical variables.

® But with some modification, trees can also be used with multi-level categorical
variables.

® To do so, we recode all multilevel categorical variables as a sequence of dummy binary
variables. Then proceed as usual.
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Dealing with Categorical Variables

Both regression and classification trees can easily hand either quantitative or binary
categorical variables.

® But with some modification, trees can also be used with multi-level categorical
variables.

® To do so, we recode all multilevel categorical variables as a sequence of dummy binary
variables. Then proceed as usual.

® But this conversion has a significant downside! The algorithm is biased toward
making early splits on categorical variables with many levels.
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Dealing with Categorical Variables

Both regression and classification trees can easily hand either quantitative or binary
categorical variables.

® But with some modification, trees can also be used with multi-level categorical
variables.

® To do so, we recode all multilevel categorical variables as a sequence of dummy binary
variables. Then proceed as usual.

® But this conversion has a significant downside! The algorithm is biased toward
making early splits on categorical variables with many levels.

® Since trees are already prone to high variance, this additional bias can lead to unwanted
increases in MSE.

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 12th, 2021



Classification Trees
[e]e]ee] }

Dealing with Categorical Variables

Both regression and classification trees can easily hand either quantitative or binary
categorical variables.

® But with some modification, trees can also be used with multi-level categorical
variables.

® To do so, we recode all multilevel categorical variables as a sequence of dummy binary
variables. Then proceed as usual.

® But this conversion has a significant downside! The algorithm is biased toward
making early splits on categorical variables with many levels.

® Since trees are already prone to high variance, this additional bias can lead to unwanted
increases in MSE.

® The “simple” fix is to lump together levels before building a tree, using domain
knowledge
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Dealing with Categorical Variables

Both regression and classification trees can easily hand either quantitative or binary
categorical variables.

® But with some modification, trees can also be used with multi-level categorical
variables.

® To do so, we recode all multilevel categorical variables as a sequence of dummy binary
variables. Then proceed as usual.

® But this conversion has a significant downside! The algorithm is biased toward
making early splits on categorical variables with many levels.

® Since trees are already prone to high variance, this additional bias can lead to unwanted
increases in MSE.

® The “simple” fix is to lump together levels before building a tree, using domain
knowledge

® An alternative is to allow the model algorithm to lump together values as necessary at
each node (order levels in increasing frequency, then make appropriate cut)
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Dealing with Categorical Variables

Both regression and classification trees can easily hand either quantitative or binary
categorical variables.

® But with some modification, trees can also be used with multi-level categorical
variables.

® To do so, we recode all multilevel categorical variables as a sequence of dummy binary
variables. Then proceed as usual.

® But this conversion has a significant downside! The algorithm is biased toward
making early splits on categorical variables with many levels.

® Since trees are already prone to high variance, this additional bias can lead to unwanted
increases in MSE.

® The “simple” fix is to lump together levels before building a tree, using domain
knowledge

® An alternative is to allow the model algorithm to lump together values as necessary at
each node (order levels in increasing frequency, then make appropriate cut)

® But this generally leads to less interpretable models
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Section 2

Classification Trees in R
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Mushroom Hunting
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Mushroom Hunting

Can | eat this?
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Mushrooms

® The mushrooms data set contains information on edibility and 22 other features
on 8124 samples of Mushrooms. We'll do a 80-20 training-test split.
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Mushrooms

® The mushrooms data set contains information on edibility and 22 other features
on 8124 samples of Mushrooms. We'll do a 80-20 training-test split.

## Rows: 6,498
## Columns: 23

## $ edibility <fct> edible, edible, edible, edible, edible, edibl~
## $ cap_shape <fct> convex, bell, convex, convex, bell, bell, bel~
## $ cap_surface <fct> scaly, scaly, scaly, smooth, scaly, smooth, s~
## $ cap_color <fct> yellow, white, gray, yellow, white, white, ye~
## $ bruises <fct> yes, yes, no, yes, yes, yes, yes, yes, yes, y~
## $ odor <fct> almond, anise, none, almond, almond, anise, a~
## $ gill_attachement <fct> free, free, free, free, free, free, free, fre~
## $ gill_spacing <fct> close, close, crowded, close, close, close, c~
## $ gill_size <fct> broad, broad, broad, broad, broad, broad, bro~
## $ gill_color <fct> black, brown, black, brown, gray, brown, gray-
## $ stalk_shape <fct> enlarging, enlarging, tapering, enlarging, en~
## $ stalk_root <fct> club, club, equal, club, club, club, club, cl~
## $ stalk_surface_above_ring <fct> smooth, smooth, smooth, smooth, smooth, smoot~
## $ stalk_surface_below_ring <fct> smooth, smooth, smooth, smooth, smooth, smoot~
## $ stalk_color_above_ring <fct> purple, purple, purple, purple, purple, purpl~
## $ stalk_color_below_ring <fct> purple, purple, purple, purple, purple, purpl~
## $ veil_type <fct> partial, partial, partial, partial, partial, ~
## $ veil_color <fct> white, white, white, white, white, white, whi~
## $ ring_number <fct> one, one, one, one, one, one, one, one, one, ~
## $ ring_type <fct> pendant, pendant, evanescent, pendant, pendan~
## $ spore_print_color <fct> brown, brown, brown, black, black, brown, bla~
## $ population <fct> numerous, numerous, abundant, numerous, numer-~
## $ habitat <fct> grasses, meadows, grasses, grasses, meadows, -~
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Classification Trees in R
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As with regression trees, we use the ‘rpart” package.
library(rpart)

library(rpart.plot)

mushroom_tree<-rpart(edibility ~ ., mushrooms_train)
rpart.plot (mushroom_tree)

odor = almond,anise,none

spore_print_color = black,brown,buff,chocolate,orange,purple,white,yellow

poisonous

poisonous
1.00
47%

1.00
1%
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Implementing classfication trees in R

As with regression trees, we use the ‘rpart” package.
library(rpart)

library(rpart.plot)

mushroom_tree<-rpart(edibility ~ ., mushrooms_train)
rpart.plot (mushroom_tree)

odor = almond,anise,none

spore_print_color = black,brown,buff,chocolate,orange,purple,white,yellow

poisonous poisonous
1.00

47%

1.00
1%

® The default parameters created data with relatively few terminal nodes.

® And it seems like we obtained good class purity!
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Model Accuracy

® How well did we do on test data?
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Model Accuracy

® How well did we do on test data?

library(yardstick)

mushroom_preds <- predict(mushroom_tree, mushrooms_test, Deilpest))

mushroom_probs <- predict(mushroom_tree, mushrooms_test, "prob") [,"edible"]

results <- data.frame( mushrooms_test$edibility, mushroom_preds,
mushroom_probs)

accuracy(results, obs, preds)

## # A tibble: 1 x 3

## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 accuracy binary 0.990

® Looks like we have fantastic accuracy!
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ROC Curve

Look at that ROC curve!

roc_curve(results, obs, probs) %>%
autoplot ()

1.00+

0.75+

0.501

0.25+

0.00- .»*

0.00 025 0.50 0.75 1.00
1 - specificity
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Confusion Matrix

® Just one more thing to check:
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Confusion Matrix

® Just one more thing to check:
conf_mat (results, obs, preds)
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Confusion Matrix

® Just one more thing to check:

conf_mat (results, obs, preds)
## Truth

## Prediction edible poisonous

##  edible 842 16

##  poisonous 0 768
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® Just one more thing to check:

conf_mat (results, obs, preds)
## Truth

## Prediction edible poisonous

##  edible 842 16

##  poisonous 0 768
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Improvements

How can we reduce the type Il error of our classifier? (rate of poison mushrooms
identified as edible )
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How can we reduce the type Il error of our classifier? (rate of poison mushrooms
identified as edible )

® Option 1: Everything is poisonous!
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Improvements

How can we reduce the type Il error of our classifier? (rate of poison mushrooms
identified as edible )

® Option 1: Everything is poisonous!
® Downside: No tasty mushrooms :(

® Option 2: change classification threshhold
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Improvements

How can we reduce the type Il error of our classifier? (rate of poison mushrooms
identified as edible )

® Option 1: Everything is poisonous!
® Downside: No tasty mushrooms :(
® Option 2: change classification threshhold
® |.e. classify as edible only if P(edible) > 99.9%
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Improvements

How can we reduce the type Il error of our classifier? (rate of poison mushrooms
identified as edible )

® Option 1: Everything is poisonous!
® Downside: No tasty mushrooms :(

® Option 2: change classification threshhold
® le. classify as edible only if P(edible) > 99.9%

® Option 3: Incorporate relative loss in Gini index.
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® Option 2: change classification threshhold
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Improvements

How can we reduce the type Il error of our classifier? (rate of poison mushrooms
identified as edible )

® Option 1: Everything is poisonous!
® Downside: No tasty mushrooms :(

® Option 2: change classification threshhold
® le. classify as edible only if P(edible) > 99.9%

® Option 3: Incorporate relative loss in Gini index.
G=2 > Lipp
i J

® Here, L(/,j) is the loss occurred when predicting level j when the truth is level .
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Additional Parameters

® To incorporate loss, create a penalty matrix and add to the parms argument in rpart:
penalty_matrix <- matrix(c(0,1,20,0), T, 2)
penalty_matrix

## [,11 [,2]
## [1,] 0 1
## [2,] 20 0
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Additional Parameters

® To incorporate loss, create a penalty matrix and add to the parms argument in rpart:
penalty_matrix <- matrix(c(0,1,20,0), T, 2)
penalty_matrix

## [,11 [,2]
## [1,] 0 1
## [2,] 20 0
mushroom_no_poison <- rpart(edibility ~., mushrooms_train,

list( penalty_matrix))
rpart.plot (mushroom_no_poison)

00%
odor = almond. o}

spore_print_color = black,brown,buf chocolate, orange. purple,yellow

population = numerous scattered solitary.

Foisonous
031
5%

habitat = paths waste

&dible: Edibie Sdible Boisonous
000 0.00 000 1.00
45% 4% 3% a19%
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New Results

® Now how did we do?
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New Results

® Now how did we do?
results %>% group_by(model) %>% accuracy( obs, preds)

## # A tibble: 2 x 4

##  model .metric .estimator .estimate
## <chr> <chr> <chr> <dbl>
## 1 with loss accuracy binary 0.994
## 2 without loss accuracy binary 0.990
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New Results

® Now how did we do?
results %>% group_by(model) %>% accuracy( obs, preds)

## # A tibble: 2 x 4

##  model .metric .estimator .estimate

## <chr> <chr> <chr> <dbl>

## 1 with loss accuracy binary 0.994

## 2 without loss accuracy binary 0.990

results %>% filter(model == "with loss") %>% conf_mat( obs, preds)
## Truth

## Prediction edible poisonous

##  edible 833 0

##  poisonous 9 784
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New Results

® Now how did we do?
results %>% group_by(model) %>% accuracy( obs, preds)

## # A tibble: 2 x 4

##  model .metric .estimator .estimate

## <chr> <chr> <chr> <dbl>

## 1 with loss accuracy binary 0.994

## 2 without loss accuracy binary 0.990

results %>% filter(model == "with loss") %>% conf_mat( obs, preds)
## Truth

## Prediction edible poisonous

##  edible 833 0

##  poisonous 9 784

® But can we now improve that Type | error?
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New Results

® Now how did we do?
results %>% group_by(model) %>% accuracy( obs, preds)

## # A tibble: 2 x 4

##  model .metric .estimator .estimate

## <chr> <chr> <chr> <dbl>

## 1 with loss accuracy binary 0.994

## 2 without loss accuracy binary 0.990

results %>% filter(model == "with loss") %>% conf_mat( obs, preds)
## Truth

## Prediction edible poisonous

##  edible 833 0

##  poisonous 9 784

® But can we now improve that Type | error?

® To reclaim some of those “poisonous” mushrooms, we'll need to build a deeper tree.
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Deeper Trees

® We can control tree depth by setting the minimum cp parameter in rpart.control
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Deeper Trees

® We can control tree depth by setting the minimum cp parameter in rpart.control
® Any split that does not decrease overall lack of fit by a factor of cp is not attemped.

® Setting low values of cp lead to deeper trees
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Deeper Trees

® We can control tree depth by setting the minimum cp parameter in rpart.control
® Any split that does not decrease overall lack of fit by a factor of cp is not attemped.

® Setting low values of cp lead to deeper trees

mushroom_deep <- rpart(edibility ~., mushrooms_train,
list( penalty_matrix),
rpart.control( .00001))

rpart.plot (mushroom_deep)
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Pruning

® | et's look at cross-validated relative error
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Pruning

® | et's look at cross-validated relative error

size of tree

15 20
1

X-val Relative Error
10
|

T T T T T T T
Inf 0.43 0.18 0.062  0.018 0.0042 0.00016

cp
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Pruning

® | et's look at cross-validated relative error

size of tree

15 20
1

X-val Relative Error
10
|

T T T T T T T
Inf 0.43 0.18 0.062  0.018 0.0042 0.00016

cp

® |t's possible we are now overfitting. It may be best to reduce to tree with 6 leaves.
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Pruning

® | et's look at cross-validated relative error

size of tree

15 20
1

X-val Relative Error
10
|

T T T T T T T
Inf 0.43 0.18 0.062  0.018 0.0042 0.00016

cp

® |t's possible we are now overfitting. It may be best to reduce to tree with 6 leaves.

mushroom_prune <- prune(mushroom_deep, 0.0042)
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Final Results

® How do our deep and pruned models do?
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Final Results

® How do our deep and pruned models do?
results %>}, group_by(model) %>} accuracy( obs, preds)

## # A tibble: 4 x 4

##  model .metric .estimator .estimate

## <chr> <chr> <chr> <dbl>

## 1 deep accuracy binary 0.998

## 2 pruned accuracy binary 0.996

## 3 with loss accuracy binary 0.994

## 4 without loss accuracy binary 0.990

results %>}, filter(model == "deep") %>% conf_mat( obs, preds)
## Truth

## Prediction edible poisonous

##  edible 838 0

##  poisonous 4 784

results %>% filter(model == "pruned") %>% conf_mat( obs, preds)
## Truth

## Prediction edible poisonous

##  edible 835 0

##  poisonous 7 784
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