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Pruning Trees in R

Outline

In today’s class, we will. . .
• Investigate pruning algorithms for improving accuracy of trees
• Create and prune decision trees in R
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Pruning Trees in R

Section 1

Pruning
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Pruning Trees in R

The general tree algorithm

1 Begin with the entire data set S and search every value of every predictor to cut S
into two groups S1 and S2 that minimizes sum of squred error:

SSE =
∑
i∈S1

(yi − ȳ1)2 +
∑
i∈S2

(yi − ȳ2)2

2 Repeat step one on both S1 and S2.

3 Repeat on the new regions.

4 . . .

5 Stop?

How do we decide when to abort the algorithm?

Consider the RSS of a big tree. How might training and test RSS compare?
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Pruning Trees in R

Subtrees

A subtree is a regression tree obtained by removing some of the branches and nodes from
the full regression tree.

• Compare test and training RSS between full tree and a subtree.

Like the best subset selection algorithm for linear models, we can improve training RSS by
exhaustively searching all subtrees for the best performing model.
• But this search is actually even more computationally expensive than best subset!
• So we instead restrict our attention to those subtrees most likely to improve RSS

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 5 / 20



Pruning Trees in R

Subtrees

A subtree is a regression tree obtained by removing some of the branches and nodes from
the full regression tree.
• Compare test and training RSS between full tree and a subtree.

Like the best subset selection algorithm for linear models, we can improve training RSS by
exhaustively searching all subtrees for the best performing model.
• But this search is actually even more computationally expensive than best subset!
• So we instead restrict our attention to those subtrees most likely to improve RSS

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 5 / 20



Pruning Trees in R

Subtrees

A subtree is a regression tree obtained by removing some of the branches and nodes from
the full regression tree.
• Compare test and training RSS between full tree and a subtree.

Like the best subset selection algorithm for linear models, we can improve training RSS by
exhaustively searching all subtrees for the best performing model.

• But this search is actually even more computationally expensive than best subset!
• So we instead restrict our attention to those subtrees most likely to improve RSS

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 5 / 20



Pruning Trees in R

Subtrees

A subtree is a regression tree obtained by removing some of the branches and nodes from
the full regression tree.
• Compare test and training RSS between full tree and a subtree.

Like the best subset selection algorithm for linear models, we can improve training RSS by
exhaustively searching all subtrees for the best performing model.
• But this search is actually even more computationally expensive than best subset!

• So we instead restrict our attention to those subtrees most likely to improve RSS

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 5 / 20



Pruning Trees in R

Subtrees

A subtree is a regression tree obtained by removing some of the branches and nodes from
the full regression tree.
• Compare test and training RSS between full tree and a subtree.

Like the best subset selection algorithm for linear models, we can improve training RSS by
exhaustively searching all subtrees for the best performing model.
• But this search is actually even more computationally expensive than best subset!
• So we instead restrict our attention to those subtrees most likely to improve RSS

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 5 / 20



Pruning Trees in R

Pruning Algorithm

Once a tree is fully grown, we prune it using cost-complexity tuning

• The goal is to find a tree of optimal size with the smallest error rate.
• We consider a sequence of trees indexed by a tuning parameter α.

For each value of α, there exists a unique subtree T of the full tree T0 that minimizes

RSS + α|T |
where |T | is the number of terminal nodes of the tree T .
• That is, α penalizes a tree based on its number of terminal nodes.
• As α increases from 0 (i.e. the full tree), branches get pruned in a predictable way,
making for relatively quick computation.
• We can find the optimal value of α using cross-validation

There are two ways to select the best subtree.

1 Choose the tree with smallest MSE.

2 Choose the smallest tree with MSE within 1 standard deviation of smallest MSE
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Pruning Trees in R

Trees on Trees

We use a subset of the pdxTrees dataset from the pdxTrees repo (maintained by K.
McConville, I. Caldwell, and N. Horton)
• To keep things manageable, we’ll focus on trees in 3 parks nearby Reed.

library(pdxTrees)
my_pdxTrees <- get_pdxTrees_parks(park = c("Powel Park", "Woodstock Park", "Berkeley Park"))

• And use trees from another park as a test set:
my_pdxTrees_test <- get_pdxTrees_parks(park = c("Glenwood Park"))

• Can we predict carbon sequestration based on Tree_Height and Crown_Width_EW?
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Pruning Trees in R

Pruning Example

How does MSE vary as tree size changes?

cp

X
−
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E
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or

0.
6

0.
8

1.
0

1.
2

Inf 0.14 0.051 0.041 0.034 0.021 0.012 0.01

1 2 3 5 6 7 8 9

size of tree

• What are the test MSEs for the full tree and the subtrees with 5 and 7 terminal nodes?
## # A tibble: 3 x 4
## model .metric .estimator .estimate
## <chr> <chr> <chr> <dbl>
## 1 full rmse standard 20.3
## 2 pruned rmse standard 19.7
## 3 very pruned rmse standard 20.1
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Pruning Trees in R

Comparison

Full Tree

Crown_Width_EW < 44

Crown_Width_EW < 29 Crown_Width_EW < 65

Tree_Height >= 91

Tree_Height < 82

Tree_Height >= 96

Tree_Height < 111 Tree_Height < 83

48
100%

25
45%

13
19%

35
25%

66
55%

57
36%

48
17%

66
19%

51
12%

96
6%

83
20%

67
9%

54
4%

79
5%

96
11%

75
3%

105
7%

yes no

Pruned Tree

Crown_Width_EW < 44

Crown_Width_EW < 29 Crown_Width_EW < 65

Tree_Height >= 91

Tree_Height < 82

Tree_Height >= 96

48
100%

25
45%

13
19%

35
25%

66
55%

57
36%

48
17%

66
19%

51
12%

96
6%

83
20%

67
9%

96
11%

yes no

Very Pruned Tree

Crown_Width_EW < 44

Crown_Width_EW < 65

Tree_Height >= 91

Tree_Height < 82

48
100%

25
45%

66
55%

57
36%

48
17%

66
19%

51
12%

96
6%

83
20%

yes no
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Pruning Trees in R

Section 2

Trees in R
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Pruning Trees in R

Creating Tree Models in R

There are two common packages for creating regression trees in R: tree and rpart.

• The tree package is one of the oldest packages on CRAN. It is a (tiny) bit easier to
use. But allows far less customization. ISLR uses tree. (Traditional)
• The rpart package is newer, computationally faster, and has more options. It also
can be combined with other packages for much nicer plots. Applied Predictive
Modeling uses rpart. (Recommended)
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Pruning Trees in R

Trees using ‘rpart“

• To fit a tree using variables Tree_Height, Crown_Width_EW, Crown_Width_NS,
Crown_Base_Height:

set.seed(1)
library(rpart)
tree_model1 <- rpart(Carbon_Sequestration_lb ~

Tree_Height + Crown_Width_EW + Crown_Width_NS + Crown_Base_Height,
data = my_pdxTrees)

• We can change several features of the tree by adding a control argument:
set.seed(1)
tree_model2 <- rpart(Carbon_Sequestration_lb ~

Tree_Height + Crown_Width_EW + Crown_Width_NS + Crown_Base_Height,
control = rpart.control(minsplit = 30, xval = 10, maxdepth = 8),
data = my_pdxTrees)

• minsplit is the minimum number of observations in a node
• xval is the number of cross-validation folds used
• maxdepth is the maximum depth of any node in the final tree
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Pruning Trees in R

Plots using plot

• There are several options for visualizing trees with varying ease-of-use and aesthetics.
• The base R plot function quickly generates plots, but. . .

plot(tree_model1)
text(tree_model1, pretty = 0, cex = .5)

|
Crown_Width_EW< 43.5

Crown_Width_NS< 31.5 Crown_Width_NS< 53.5

Tree_Height>=90

Tree_Height< 82

Crown_Width_NS>=89

Crown_Width_EW< 64.5

Tree_Height< 81

Tree_Height>=90.5

Crown_Base_Height>=8.5

Tree_Height< 88.5

11.69 34.79

41.27

51.31 105.7

38.6

52.84

59.39 93.03

81.72
91.24 127.9
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Pruning Trees in R

Plots using rpart.plot

• An alternative to plot is the rpart.plot function from the package of the same
name:

library(rpart.plot)
rpart.plot(tree_model1)

Crown_Width_EW < 44

Crown_Width_NS < 32 Crown_Width_NS < 54

Tree_Height >= 90

Tree_Height < 82

Crown_Width_NS >= 89

Crown_Width_EW < 65

Tree_Height < 81

Tree_Height >= 91

Crown_Base_Height >= 9

Tree_Height < 89

48
100%

25
45%

12
18%

35
26%

66
55%

51
24%

41
14%

65
10%

51
7%

106
3%

78
31%

39
3%

82
28%

67
16%

53
5%

74
11%

59
6%

93
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• Some further customization available (see ?rpart.plot)
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Pruning Trees in R

Trees in R via rpart cont’d

• The rpart function automatically performs k-fold CV when choosing among
potential splits.

• To access results, append $cptable to the rpart model object:
tree_model1$cptable

## CP nsplit rel error xerror xstd
## 1 0.31073097 0 1.0000000 1.0105895 0.09666964
## 2 0.07370105 1 0.6892690 0.7679112 0.07560215
## 3 0.04577064 2 0.6155680 0.7211540 0.07009241
## 4 0.04342290 4 0.5240267 0.6668256 0.06922100
## 5 0.03450324 5 0.4806038 0.6378779 0.06854061
## 6 0.01877027 7 0.4115973 0.6624756 0.08409966
## 7 0.01778685 9 0.3740568 0.7124886 0.09350971
## 8 0.01000000 11 0.3384831 0.7070176 0.09248091

• CP is the value of the complexity parameter
• nsplit is number of splits
• rel error is 1 − R2, using R2 = 1 − RSS

TSS
• xerror is cross-validated estimate of relative error
• xstd is the standard deviation in xerror based on CV
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Pruning Trees in R

Analyze Results

• The printcp function displays key model information
printcp(tree_model1)

##
## Regression tree:
## rpart(formula = Carbon_Sequestration_lb ~ Tree_Height + Crown_Width_EW +
## Crown_Width_NS + Crown_Base_Height, data = my_pdxTrees)
##
## Variables actually used in tree construction:
## [1] Crown_Base_Height Crown_Width_EW Crown_Width_NS Tree_Height
##
## Root node error: 406713/307 = 1324.8
##
## n= 307
##
## CP nsplit rel error xerror xstd
## 1 0.310731 0 1.00000 1.01059 0.096670
## 2 0.073701 1 0.68927 0.76791 0.075602
## 3 0.045771 2 0.61557 0.72115 0.070092
## 4 0.043423 4 0.52403 0.66683 0.069221
## 5 0.034503 5 0.48060 0.63788 0.068541
## 6 0.018770 7 0.41160 0.66248 0.084100
## 7 0.017787 9 0.37406 0.71249 0.093510
## 8 0.010000 11 0.33848 0.70702 0.092481
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Pruning Trees in R

Analyze Results cont’d

• Detailed listing of model parts can be accessed via summary:

summary(tree_model1)

## Call:
## rpart(formula = Carbon_Sequestration_lb ~ Tree_Height + Crown_Width_EW +
## Crown_Width_NS + Crown_Base_Height, data = my_pdxTrees)
## n= 307
##
## CP nsplit rel error xerror xstd
## 1 0.31073097 0 1.0000000 1.0105895 0.09666964
## 2 0.07370105 1 0.6892690 0.7679112 0.07560215
## 3 0.04577064 2 0.6155680 0.7211540 0.07009241
## 4 0.04342290 4 0.5240267 0.6668256 0.06922100
## 5 0.03450324 5 0.4806038 0.6378779 0.06854061
## 6 0.01877027 7 0.4115973 0.6624756 0.08409966
## 7 0.01778685 9 0.3740568 0.7124886 0.09350971
## 8 0.01000000 11 0.3384831 0.7070176 0.09248091
##
## Variable importance
## Crown_Width_EW Crown_Width_NS Tree_Height Crown_Base_Height
## 38 28 24 10
##
## Node number 1: 307 observations, complexity param=0.310731
## mean=47.95081, MSE=1324.797
## left son=2 (137 obs) right son=3 (170 obs)
## Primary splits:
## Crown_Width_EW < 43.5 to the left, improve=0.31073100, (0 missing)
## Crown_Width_NS < 49.5 to the left, improve=0.28692940, (0 missing)
## Tree_Height < 78.5 to the left, improve=0.16233240, (0 missing)
## Crown_Base_Height < 4.5 to the left, improve=0.05039755, (0 missing)
## Surrogate splits:
## Crown_Width_NS < 43.5 to the left, agree=0.788, adj=0.526, (0 split)
## Tree_Height < 45.5 to the left, agree=0.739, adj=0.416, (0 split)
## Crown_Base_Height < 5.5 to the left, agree=0.629, adj=0.168, (0 split)
##
## Node number 2: 137 observations, complexity param=0.0434229
## mean=25.34964, MSE=389.2232
## left son=4 (56 obs) right son=5 (81 obs)
## Primary splits:
## Crown_Width_NS < 31.5 to the left, improve=0.33119760, (0 missing)
## Crown_Width_EW < 28.5 to the left, improve=0.29201530, (0 missing)
## Tree_Height < 32.5 to the left, improve=0.18481170, (0 missing)
## Crown_Base_Height < 15.5 to the left, improve=0.07603281, (0 missing)
## Surrogate splits:
## Crown_Width_EW < 27.5 to the left, agree=0.847, adj=0.625, (0 split)
## Tree_Height < 37.5 to the left, agree=0.810, adj=0.536, (0 split)
## Crown_Base_Height < 2.5 to the left, agree=0.635, adj=0.107, (0 split)
##
## Node number 3: 170 observations, complexity param=0.07370105
## mean=66.16471, MSE=1335.358
## left son=6 (75 obs) right son=7 (95 obs)
## Primary splits:
## Crown_Width_NS < 53.5 to the left, improve=0.13204280, (0 missing)
## Crown_Width_EW < 64.5 to the left, improve=0.10966530, (0 missing)
## Tree_Height < 90.5 to the right, improve=0.07883100, (0 missing)
## Crown_Base_Height < 15.5 to the right, improve=0.02142455, (0 missing)
## Surrogate splits:
## Crown_Width_EW < 56.5 to the left, agree=0.718, adj=0.360, (0 split)
## Crown_Base_Height < 11.5 to the right, agree=0.624, adj=0.147, (0 split)
## Tree_Height < 115 to the right, agree=0.612, adj=0.120, (0 split)
##
## Node number 4: 56 observations
## mean=11.69464, MSE=149.8387
##
## Node number 5: 81 observations
## mean=34.79012, MSE=336.691
##
## Node number 6: 75 observations, complexity param=0.03450324
## mean=51.22, MSE=762.2336
## left son=12 (44 obs) right son=13 (31 obs)
## Primary splits:
## Tree_Height < 90 to the right, improve=0.18425150, (0 missing)
## Crown_Width_EW < 68 to the left, improve=0.07516464, (0 missing)
## Crown_Base_Height < 15.5 to the right, improve=0.06593795, (0 missing)
## Crown_Width_NS < 42.5 to the left, improve=0.04223611, (0 missing)
## Surrogate splits:
## Crown_Base_Height < 5.5 to the right, agree=0.680, adj=0.226, (0 split)
## Crown_Width_EW < 74.5 to the left, agree=0.627, adj=0.097, (0 split)
## Crown_Width_NS < 49.5 to the left, agree=0.627, adj=0.097, (0 split)
##
## Node number 7: 95 observations, complexity param=0.04577064
## mean=77.96316, MSE=1472.297
## left son=14 (8 obs) right son=15 (87 obs)
## Primary splits:
## Crown_Width_NS < 89 to the right, improve=0.09677324, (0 missing)
## Tree_Height < 79.5 to the left, improve=0.09663359, (0 missing)
## Crown_Width_EW < 64.5 to the left, improve=0.08443065, (0 missing)
## Crown_Base_Height < 8.5 to the right, improve=0.03463073, (0 missing)
## Surrogate splits:
## Crown_Width_EW < 112 to the right, agree=0.958, adj=0.5, (0 split)
##
## Node number 12: 44 observations
## mean=41.27273, MSE=229.3993
##
## Node number 13: 31 observations, complexity param=0.03450324
## mean=65.33871, MSE=1178.734
## left son=26 (23 obs) right son=27 (8 obs)
## Primary splits:
## Tree_Height < 82 to the left, improve=0.47980970, (0 missing)
## Crown_Width_EW < 56.5 to the left, improve=0.12022870, (0 missing)
## Crown_Base_Height < 8.5 to the left, improve=0.06734482, (0 missing)
## Crown_Width_NS < 34 to the right, improve=0.02241826, (0 missing)
## Surrogate splits:
## Crown_Width_EW < 70.5 to the left, agree=0.871, adj=0.500, (0 split)
## Crown_Base_Height < 9.5 to the left, agree=0.839, adj=0.375, (0 split)
##
## Node number 14: 8 observations
## mean=38.6, MSE=847
##
## Node number 15: 87 observations, complexity param=0.04577064
## mean=81.58276, MSE=1374.215
## left son=30 (50 obs) right son=31 (37 obs)
## Primary splits:
## Crown_Width_EW < 64.5 to the left, improve=0.19819470, (0 missing)
## Tree_Height < 79.5 to the left, improve=0.12996880, (0 missing)
## Crown_Width_NS < 80.5 to the left, improve=0.07464973, (0 missing)
## Crown_Base_Height < 8.5 to the right, improve=0.03347816, (0 missing)
## Surrogate splits:
## Crown_Width_NS < 69.5 to the left, agree=0.701, adj=0.297, (0 split)
## Crown_Base_Height < 12.5 to the left, agree=0.609, adj=0.081, (0 split)
## Tree_Height < 51.5 to the right, agree=0.598, adj=0.054, (0 split)
##
## Node number 26: 23 observations
## mean=51.31304, MSE=670.6237
##
## Node number 27: 8 observations
## mean=105.6625, MSE=447.9748
##
## Node number 30: 50 observations, complexity param=0.01778685
## mean=67.386, MSE=933.6504
## left son=60 (16 obs) right son=61 (34 obs)
## Primary splits:
## Tree_Height < 81 to the left, improve=0.10668250, (0 missing)
## Crown_Width_EW < 53 to the left, improve=0.05495141, (0 missing)
## Crown_Width_NS < 66.5 to the right, improve=0.04686122, (0 missing)
## Crown_Base_Height < 5.5 to the left, improve=0.04520770, (0 missing)
## Surrogate splits:
## Crown_Base_Height < 5.5 to the left, agree=0.72, adj=0.125, (0 split)
##
## Node number 31: 37 observations, complexity param=0.01877027
## mean=100.7676, MSE=1329.153
## left son=62 (13 obs) right son=63 (24 obs)
## Primary splits:
## Crown_Base_Height < 8.5 to the right, improve=0.14780730, (0 missing)
## Tree_Height < 83 to the left, improve=0.08120309, (0 missing)
## Crown_Width_EW < 80.5 to the left, improve=0.05163244, (0 missing)
## Crown_Width_NS < 80.5 to the left, improve=0.02733851, (0 missing)
## Surrogate splits:
## Tree_Height < 95 to the right, agree=0.703, adj=0.154, (0 split)
## Crown_Width_NS < 61 to the left, agree=0.703, adj=0.154, (0 split)
##
## Node number 60: 16 observations
## mean=52.8375, MSE=340.9148
##
## Node number 61: 34 observations, complexity param=0.01778685
## mean=74.23235, MSE=1066.108
## left son=122 (19 obs) right son=123 (15 obs)
## Primary splits:
## Tree_Height < 90.5 to the right, improve=0.26175650, (0 missing)
## Crown_Width_NS < 66 to the right, improve=0.10829910, (0 missing)
## Crown_Width_EW < 53 to the left, improve=0.10249460, (0 missing)
## Crown_Base_Height < 9.5 to the right, improve=0.04865338, (0 missing)
## Surrogate splits:
## Crown_Width_NS < 60.5 to the right, agree=0.618, adj=0.133, (0 split)
## Crown_Base_Height < 8.5 to the left, agree=0.618, adj=0.133, (0 split)
##
## Node number 62: 13 observations
## mean=81.72308, MSE=1057.383
##
## Node number 63: 24 observations, complexity param=0.01877027
## mean=111.0833, MSE=1173.488
## left son=126 (11 obs) right son=127 (13 obs)
## Primary splits:
## Tree_Height < 88.5 to the left, improve=0.28402660, (0 missing)
## Crown_Width_EW < 82.5 to the left, improve=0.25072600, (0 missing)
## Crown_Width_NS < 71 to the right, improve=0.05756322, (0 missing)
## Crown_Base_Height < 7.5 to the right, improve=0.01406687, (0 missing)
## Surrogate splits:
## Crown_Base_Height < 6.5 to the left, agree=0.667, adj=0.273, (0 split)
## Crown_Width_NS < 81.5 to the left, agree=0.625, adj=0.182, (0 split)
## Crown_Width_EW < 79 to the left, agree=0.583, adj=0.091, (0 split)
##
## Node number 122: 19 observations
## mean=59.38947, MSE=666.4041
##
## Node number 123: 15 observations
## mean=93.03333, MSE=939.8622
##
## Node number 126: 11 observations
## mean=91.23636, MSE=422.055
##
## Node number 127: 13 observations
## mean=127.8769, MSE=1193.989
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Pruning Trees in R

Analyze Results cont’d

• Detailed listing of model parts can be accessed via summary:
summary(tree_model1)

## Call:
## rpart(formula = Carbon_Sequestration_lb ~ Tree_Height + Crown_Width_EW +
## Crown_Width_NS + Crown_Base_Height, data = my_pdxTrees)
## n= 307
##
## CP nsplit rel error xerror xstd
## 1 0.31073097 0 1.0000000 1.0105895 0.09666964
## 2 0.07370105 1 0.6892690 0.7679112 0.07560215
## 3 0.04577064 2 0.6155680 0.7211540 0.07009241
## 4 0.04342290 4 0.5240267 0.6668256 0.06922100
## 5 0.03450324 5 0.4806038 0.6378779 0.06854061
## 6 0.01877027 7 0.4115973 0.6624756 0.08409966
## 7 0.01778685 9 0.3740568 0.7124886 0.09350971
## 8 0.01000000 11 0.3384831 0.7070176 0.09248091
##
## Variable importance
## Crown_Width_EW Crown_Width_NS Tree_Height Crown_Base_Height
## 38 28 24 10
##
## Node number 1: 307 observations, complexity param=0.310731
## mean=47.95081, MSE=1324.797
## left son=2 (137 obs) right son=3 (170 obs)
## Primary splits:
## Crown_Width_EW < 43.5 to the left, improve=0.31073100, (0 missing)
## Crown_Width_NS < 49.5 to the left, improve=0.28692940, (0 missing)
## Tree_Height < 78.5 to the left, improve=0.16233240, (0 missing)
## Crown_Base_Height < 4.5 to the left, improve=0.05039755, (0 missing)
## Surrogate splits:
## Crown_Width_NS < 43.5 to the left, agree=0.788, adj=0.526, (0 split)
## Tree_Height < 45.5 to the left, agree=0.739, adj=0.416, (0 split)
## Crown_Base_Height < 5.5 to the left, agree=0.629, adj=0.168, (0 split)
##
## Node number 2: 137 observations, complexity param=0.0434229
## mean=25.34964, MSE=389.2232
## left son=4 (56 obs) right son=5 (81 obs)
## Primary splits:
## Crown_Width_NS < 31.5 to the left, improve=0.33119760, (0 missing)
## Crown_Width_EW < 28.5 to the left, improve=0.29201530, (0 missing)
## Tree_Height < 32.5 to the left, improve=0.18481170, (0 missing)
## Crown_Base_Height < 15.5 to the left, improve=0.07603281, (0 missing)
## Surrogate splits:
## Crown_Width_EW < 27.5 to the left, agree=0.847, adj=0.625, (0 split)
## Tree_Height < 37.5 to the left, agree=0.810, adj=0.536, (0 split)
## Crown_Base_Height < 2.5 to the left, agree=0.635, adj=0.107, (0 split)
##
## Node number 3: 170 observations, complexity param=0.07370105
## mean=66.16471, MSE=1335.358
## left son=6 (75 obs) right son=7 (95 obs)
## Primary splits:
## Crown_Width_NS < 53.5 to the left, improve=0.13204280, (0 missing)
## Crown_Width_EW < 64.5 to the left, improve=0.10966530, (0 missing)
## Tree_Height < 90.5 to the right, improve=0.07883100, (0 missing)
## Crown_Base_Height < 15.5 to the right, improve=0.02142455, (0 missing)
## Surrogate splits:
## Crown_Width_EW < 56.5 to the left, agree=0.718, adj=0.360, (0 split)
## Crown_Base_Height < 11.5 to the right, agree=0.624, adj=0.147, (0 split)
## Tree_Height < 115 to the right, agree=0.612, adj=0.120, (0 split)
##
## Node number 4: 56 observations
## mean=11.69464, MSE=149.8387
##
## Node number 5: 81 observations
## mean=34.79012, MSE=336.691
##
## Node number 6: 75 observations, complexity param=0.03450324
## mean=51.22, MSE=762.2336
## left son=12 (44 obs) right son=13 (31 obs)
## Primary splits:
## Tree_Height < 90 to the right, improve=0.18425150, (0 missing)
## Crown_Width_EW < 68 to the left, improve=0.07516464, (0 missing)
## Crown_Base_Height < 15.5 to the right, improve=0.06593795, (0 missing)
## Crown_Width_NS < 42.5 to the left, improve=0.04223611, (0 missing)
## Surrogate splits:
## Crown_Base_Height < 5.5 to the right, agree=0.680, adj=0.226, (0 split)
## Crown_Width_EW < 74.5 to the left, agree=0.627, adj=0.097, (0 split)
## Crown_Width_NS < 49.5 to the left, agree=0.627, adj=0.097, (0 split)
##
## Node number 7: 95 observations, complexity param=0.04577064
## mean=77.96316, MSE=1472.297
## left son=14 (8 obs) right son=15 (87 obs)
## Primary splits:
## Crown_Width_NS < 89 to the right, improve=0.09677324, (0 missing)
## Tree_Height < 79.5 to the left, improve=0.09663359, (0 missing)
## Crown_Width_EW < 64.5 to the left, improve=0.08443065, (0 missing)
## Crown_Base_Height < 8.5 to the right, improve=0.03463073, (0 missing)
## Surrogate splits:
## Crown_Width_EW < 112 to the right, agree=0.958, adj=0.5, (0 split)
##
## Node number 12: 44 observations
## mean=41.27273, MSE=229.3993
##
## Node number 13: 31 observations, complexity param=0.03450324
## mean=65.33871, MSE=1178.734
## left son=26 (23 obs) right son=27 (8 obs)
## Primary splits:
## Tree_Height < 82 to the left, improve=0.47980970, (0 missing)
## Crown_Width_EW < 56.5 to the left, improve=0.12022870, (0 missing)
## Crown_Base_Height < 8.5 to the left, improve=0.06734482, (0 missing)
## Crown_Width_NS < 34 to the right, improve=0.02241826, (0 missing)
## Surrogate splits:
## Crown_Width_EW < 70.5 to the left, agree=0.871, adj=0.500, (0 split)
## Crown_Base_Height < 9.5 to the left, agree=0.839, adj=0.375, (0 split)
##
## Node number 14: 8 observations
## mean=38.6, MSE=847
##
## Node number 15: 87 observations, complexity param=0.04577064
## mean=81.58276, MSE=1374.215
## left son=30 (50 obs) right son=31 (37 obs)
## Primary splits:
## Crown_Width_EW < 64.5 to the left, improve=0.19819470, (0 missing)
## Tree_Height < 79.5 to the left, improve=0.12996880, (0 missing)
## Crown_Width_NS < 80.5 to the left, improve=0.07464973, (0 missing)
## Crown_Base_Height < 8.5 to the right, improve=0.03347816, (0 missing)
## Surrogate splits:
## Crown_Width_NS < 69.5 to the left, agree=0.701, adj=0.297, (0 split)
## Crown_Base_Height < 12.5 to the left, agree=0.609, adj=0.081, (0 split)
## Tree_Height < 51.5 to the right, agree=0.598, adj=0.054, (0 split)
##
## Node number 26: 23 observations
## mean=51.31304, MSE=670.6237
##
## Node number 27: 8 observations
## mean=105.6625, MSE=447.9748
##
## Node number 30: 50 observations, complexity param=0.01778685
## mean=67.386, MSE=933.6504
## left son=60 (16 obs) right son=61 (34 obs)
## Primary splits:
## Tree_Height < 81 to the left, improve=0.10668250, (0 missing)
## Crown_Width_EW < 53 to the left, improve=0.05495141, (0 missing)
## Crown_Width_NS < 66.5 to the right, improve=0.04686122, (0 missing)
## Crown_Base_Height < 5.5 to the left, improve=0.04520770, (0 missing)
## Surrogate splits:
## Crown_Base_Height < 5.5 to the left, agree=0.72, adj=0.125, (0 split)
##
## Node number 31: 37 observations, complexity param=0.01877027
## mean=100.7676, MSE=1329.153
## left son=62 (13 obs) right son=63 (24 obs)
## Primary splits:
## Crown_Base_Height < 8.5 to the right, improve=0.14780730, (0 missing)
## Tree_Height < 83 to the left, improve=0.08120309, (0 missing)
## Crown_Width_EW < 80.5 to the left, improve=0.05163244, (0 missing)
## Crown_Width_NS < 80.5 to the left, improve=0.02733851, (0 missing)
## Surrogate splits:
## Tree_Height < 95 to the right, agree=0.703, adj=0.154, (0 split)
## Crown_Width_NS < 61 to the left, agree=0.703, adj=0.154, (0 split)
##
## Node number 60: 16 observations
## mean=52.8375, MSE=340.9148
##
## Node number 61: 34 observations, complexity param=0.01778685
## mean=74.23235, MSE=1066.108
## left son=122 (19 obs) right son=123 (15 obs)
## Primary splits:
## Tree_Height < 90.5 to the right, improve=0.26175650, (0 missing)
## Crown_Width_NS < 66 to the right, improve=0.10829910, (0 missing)
## Crown_Width_EW < 53 to the left, improve=0.10249460, (0 missing)
## Crown_Base_Height < 9.5 to the right, improve=0.04865338, (0 missing)
## Surrogate splits:
## Crown_Width_NS < 60.5 to the right, agree=0.618, adj=0.133, (0 split)
## Crown_Base_Height < 8.5 to the left, agree=0.618, adj=0.133, (0 split)
##
## Node number 62: 13 observations
## mean=81.72308, MSE=1057.383
##
## Node number 63: 24 observations, complexity param=0.01877027
## mean=111.0833, MSE=1173.488
## left son=126 (11 obs) right son=127 (13 obs)
## Primary splits:
## Tree_Height < 88.5 to the left, improve=0.28402660, (0 missing)
## Crown_Width_EW < 82.5 to the left, improve=0.25072600, (0 missing)
## Crown_Width_NS < 71 to the right, improve=0.05756322, (0 missing)
## Crown_Base_Height < 7.5 to the right, improve=0.01406687, (0 missing)
## Surrogate splits:
## Crown_Base_Height < 6.5 to the left, agree=0.667, adj=0.273, (0 split)
## Crown_Width_NS < 81.5 to the left, agree=0.625, adj=0.182, (0 split)
## Crown_Width_EW < 79 to the left, agree=0.583, adj=0.091, (0 split)
##
## Node number 122: 19 observations
## mean=59.38947, MSE=666.4041
##
## Node number 123: 15 observations
## mean=93.03333, MSE=939.8622
##
## Node number 126: 11 observations
## mean=91.23636, MSE=422.055
##
## Node number 127: 13 observations
## mean=127.8769, MSE=1193.989
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Pruning Trees in R

CV Plots

• We can plot the results of cross-validation using plotcp:

plotcp(tree_model1)
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• The horizontal line is 1 SE above minimum relative error
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Pruning Trees in R

Pruning

• Based on the CV plot, 6 splits with CP = 0.039 gives the lowest error
• While 5 splits with CP = 0.045 gives least splits within 1 SE of best.

• We can prune our tree using the prune function with a given value of cp
pruned_tree <- prune(tree_model1, cp = 0.039)
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Pruning Trees in R

Test Error Rates

• How well do models do on the test data?

• Let’s build a results data frame:
results <- data.frame(model = "full",

obs = my_pdxTrees_test$Carbon_Sequestration_lb,
preds = predict(tree_model1, my_pdxTrees_test))

results <- rbind(results,
data.frame(model = "pruned",

obs = my_pdxTrees_test$Carbon_Sequestration_lb,
preds = predict(pruned_tree, my_pdxTrees_test)))

• And use rmse from yardstick to assess:
library(yardstick)
results %>% group_by(model) %>% rmse(truth = obs, estimate = preds)

## # A tibble: 2 x 4
## model .metric .estimator .estimate
## <chr> <chr> <chr> <dbl>
## 1 full rmse standard 21.1
## 2 pruned rmse standard 19.2
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