
Pruning Trees in R

Classification and Regression Trees

Nate Wells

Math 243: Stat Learning

November 8th, 2021

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 1 / 20

Pruning Trees in R

Outline

In today’s class, we will. . .
• Investigate pruning algorithms for improving accuracy of trees
• Create and prune decision trees in R

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 2 / 20

Pruning Trees in R

Section 1

Pruning

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 3 / 20

Pruning Trees in R

The general tree algorithm

1 Begin with the entire data set S and search every value of every predictor to cut S
into two groups S1 and S2 that minimizes sum of squred error:

SSE =
∑
i∈S1

(yi − ȳ1)2 +
∑
i∈S2

(yi − ȳ2)2

2 Repeat step one on both S1 and S2.

3 Repeat on the new regions.

4 . . .

5 Stop?

How do we decide when to abort the algorithm?

Consider the RSS of a big tree. How might training and test RSS compare?

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 4 / 20

Pruning Trees in R

The general tree algorithm

1 Begin with the entire data set S and search every value of every predictor to cut S
into two groups S1 and S2 that minimizes sum of squred error:

SSE =
∑
i∈S1

(yi − ȳ1)2 +
∑
i∈S2

(yi − ȳ2)2

2 Repeat step one on both S1 and S2.

3 Repeat on the new regions.

4 . . .

5 Stop?

How do we decide when to abort the algorithm?

Consider the RSS of a big tree. How might training and test RSS compare?

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 4 / 20

Pruning Trees in R

The general tree algorithm

1 Begin with the entire data set S and search every value of every predictor to cut S
into two groups S1 and S2 that minimizes sum of squred error:

SSE =
∑
i∈S1

(yi − ȳ1)2 +
∑
i∈S2

(yi − ȳ2)2

2 Repeat step one on both S1 and S2.

3 Repeat on the new regions.

4 . . .

5 Stop?

How do we decide when to abort the algorithm?

Consider the RSS of a big tree. How might training and test RSS compare?

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 4 / 20

Pruning Trees in R

The general tree algorithm

1 Begin with the entire data set S and search every value of every predictor to cut S
into two groups S1 and S2 that minimizes sum of squred error:

SSE =
∑
i∈S1

(yi − ȳ1)2 +
∑
i∈S2

(yi − ȳ2)2

2 Repeat step one on both S1 and S2.

3 Repeat on the new regions.

4 . . .

5 Stop?

How do we decide when to abort the algorithm?

Consider the RSS of a big tree. How might training and test RSS compare?

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 4 / 20

Pruning Trees in R

The general tree algorithm

1 Begin with the entire data set S and search every value of every predictor to cut S
into two groups S1 and S2 that minimizes sum of squred error:

SSE =
∑
i∈S1

(yi − ȳ1)2 +
∑
i∈S2

(yi − ȳ2)2

2 Repeat step one on both S1 and S2.

3 Repeat on the new regions.

4 . . .

5 Stop?

How do we decide when to abort the algorithm?

Consider the RSS of a big tree. How might training and test RSS compare?

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 4 / 20

Pruning Trees in R

The general tree algorithm

1 Begin with the entire data set S and search every value of every predictor to cut S
into two groups S1 and S2 that minimizes sum of squred error:

SSE =
∑
i∈S1

(yi − ȳ1)2 +
∑
i∈S2

(yi − ȳ2)2

2 Repeat step one on both S1 and S2.

3 Repeat on the new regions.

4 . . .

5 Stop?

How do we decide when to abort the algorithm?

Consider the RSS of a big tree. How might training and test RSS compare?

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 4 / 20

Pruning Trees in R

The general tree algorithm

1 Begin with the entire data set S and search every value of every predictor to cut S
into two groups S1 and S2 that minimizes sum of squred error:

SSE =
∑
i∈S1

(yi − ȳ1)2 +
∑
i∈S2

(yi − ȳ2)2

2 Repeat step one on both S1 and S2.

3 Repeat on the new regions.

4 . . .

5 Stop?

How do we decide when to abort the algorithm?

Consider the RSS of a big tree. How might training and test RSS compare?

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 4 / 20

Pruning Trees in R

Subtrees

A subtree is a regression tree obtained by removing some of the branches and nodes from
the full regression tree.

• Compare test and training RSS between full tree and a subtree.

Like the best subset selection algorithm for linear models, we can improve training RSS by
exhaustively searching all subtrees for the best performing model.
• But this search is actually even more computationally expensive than best subset!
• So we instead restrict our attention to those subtrees most likely to improve RSS

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 5 / 20

Pruning Trees in R

Subtrees

A subtree is a regression tree obtained by removing some of the branches and nodes from
the full regression tree.
• Compare test and training RSS between full tree and a subtree.

Like the best subset selection algorithm for linear models, we can improve training RSS by
exhaustively searching all subtrees for the best performing model.
• But this search is actually even more computationally expensive than best subset!
• So we instead restrict our attention to those subtrees most likely to improve RSS

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 5 / 20

Pruning Trees in R

Subtrees

A subtree is a regression tree obtained by removing some of the branches and nodes from
the full regression tree.
• Compare test and training RSS between full tree and a subtree.

Like the best subset selection algorithm for linear models, we can improve training RSS by
exhaustively searching all subtrees for the best performing model.

• But this search is actually even more computationally expensive than best subset!
• So we instead restrict our attention to those subtrees most likely to improve RSS

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 5 / 20

Pruning Trees in R

Subtrees

A subtree is a regression tree obtained by removing some of the branches and nodes from
the full regression tree.
• Compare test and training RSS between full tree and a subtree.

Like the best subset selection algorithm for linear models, we can improve training RSS by
exhaustively searching all subtrees for the best performing model.
• But this search is actually even more computationally expensive than best subset!

• So we instead restrict our attention to those subtrees most likely to improve RSS

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 5 / 20

Pruning Trees in R

Subtrees

A subtree is a regression tree obtained by removing some of the branches and nodes from
the full regression tree.
• Compare test and training RSS between full tree and a subtree.

Like the best subset selection algorithm for linear models, we can improve training RSS by
exhaustively searching all subtrees for the best performing model.
• But this search is actually even more computationally expensive than best subset!
• So we instead restrict our attention to those subtrees most likely to improve RSS

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 5 / 20

Pruning Trees in R

Pruning Algorithm

Once a tree is fully grown, we prune it using cost-complexity tuning

• The goal is to find a tree of optimal size with the smallest error rate.
• We consider a sequence of trees indexed by a tuning parameter α.

For each value of α, there exists a unique subtree T of the full tree T0 that minimizes

RSS + α|T |
where |T | is the number of terminal nodes of the tree T .
• That is, α penalizes a tree based on its number of terminal nodes.
• As α increases from 0 (i.e. the full tree), branches get pruned in a predictable way,
making for relatively quick computation.
• We can find the optimal value of α using cross-validation

There are two ways to select the best subtree.

1 Choose the tree with smallest MSE.

2 Choose the smallest tree with MSE within 1 standard deviation of smallest MSE

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 6 / 20

Pruning Trees in R

Pruning Algorithm

Once a tree is fully grown, we prune it using cost-complexity tuning
• The goal is to find a tree of optimal size with the smallest error rate.

• We consider a sequence of trees indexed by a tuning parameter α.

For each value of α, there exists a unique subtree T of the full tree T0 that minimizes

RSS + α|T |
where |T | is the number of terminal nodes of the tree T .
• That is, α penalizes a tree based on its number of terminal nodes.
• As α increases from 0 (i.e. the full tree), branches get pruned in a predictable way,
making for relatively quick computation.
• We can find the optimal value of α using cross-validation

There are two ways to select the best subtree.

1 Choose the tree with smallest MSE.

2 Choose the smallest tree with MSE within 1 standard deviation of smallest MSE

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 6 / 20

Pruning Trees in R

Pruning Algorithm

Once a tree is fully grown, we prune it using cost-complexity tuning
• The goal is to find a tree of optimal size with the smallest error rate.
• We consider a sequence of trees indexed by a tuning parameter α.

For each value of α, there exists a unique subtree T of the full tree T0 that minimizes

RSS + α|T |
where |T | is the number of terminal nodes of the tree T .
• That is, α penalizes a tree based on its number of terminal nodes.
• As α increases from 0 (i.e. the full tree), branches get pruned in a predictable way,
making for relatively quick computation.
• We can find the optimal value of α using cross-validation

There are two ways to select the best subtree.

1 Choose the tree with smallest MSE.

2 Choose the smallest tree with MSE within 1 standard deviation of smallest MSE

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 6 / 20

Pruning Trees in R

Pruning Algorithm

Once a tree is fully grown, we prune it using cost-complexity tuning
• The goal is to find a tree of optimal size with the smallest error rate.
• We consider a sequence of trees indexed by a tuning parameter α.

For each value of α, there exists a unique subtree T of the full tree T0 that minimizes

RSS + α|T |
where |T | is the number of terminal nodes of the tree T .

• That is, α penalizes a tree based on its number of terminal nodes.
• As α increases from 0 (i.e. the full tree), branches get pruned in a predictable way,
making for relatively quick computation.
• We can find the optimal value of α using cross-validation

There are two ways to select the best subtree.

1 Choose the tree with smallest MSE.

2 Choose the smallest tree with MSE within 1 standard deviation of smallest MSE

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 6 / 20

Pruning Trees in R

Pruning Algorithm

Once a tree is fully grown, we prune it using cost-complexity tuning
• The goal is to find a tree of optimal size with the smallest error rate.
• We consider a sequence of trees indexed by a tuning parameter α.

For each value of α, there exists a unique subtree T of the full tree T0 that minimizes

RSS + α|T |
where |T | is the number of terminal nodes of the tree T .
• That is, α penalizes a tree based on its number of terminal nodes.

• As α increases from 0 (i.e. the full tree), branches get pruned in a predictable way,
making for relatively quick computation.
• We can find the optimal value of α using cross-validation

There are two ways to select the best subtree.

1 Choose the tree with smallest MSE.

2 Choose the smallest tree with MSE within 1 standard deviation of smallest MSE

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 6 / 20

Pruning Trees in R

Pruning Algorithm

Once a tree is fully grown, we prune it using cost-complexity tuning
• The goal is to find a tree of optimal size with the smallest error rate.
• We consider a sequence of trees indexed by a tuning parameter α.

For each value of α, there exists a unique subtree T of the full tree T0 that minimizes

RSS + α|T |
where |T | is the number of terminal nodes of the tree T .
• That is, α penalizes a tree based on its number of terminal nodes.
• As α increases from 0 (i.e. the full tree), branches get pruned in a predictable way,
making for relatively quick computation.

• We can find the optimal value of α using cross-validation

There are two ways to select the best subtree.

1 Choose the tree with smallest MSE.

2 Choose the smallest tree with MSE within 1 standard deviation of smallest MSE

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 6 / 20

Pruning Trees in R

Pruning Algorithm

Once a tree is fully grown, we prune it using cost-complexity tuning
• The goal is to find a tree of optimal size with the smallest error rate.
• We consider a sequence of trees indexed by a tuning parameter α.

For each value of α, there exists a unique subtree T of the full tree T0 that minimizes

RSS + α|T |
where |T | is the number of terminal nodes of the tree T .
• That is, α penalizes a tree based on its number of terminal nodes.
• As α increases from 0 (i.e. the full tree), branches get pruned in a predictable way,
making for relatively quick computation.
• We can find the optimal value of α using cross-validation

There are two ways to select the best subtree.

1 Choose the tree with smallest MSE.

2 Choose the smallest tree with MSE within 1 standard deviation of smallest MSE

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 6 / 20

Pruning Trees in R

Pruning Algorithm

Once a tree is fully grown, we prune it using cost-complexity tuning
• The goal is to find a tree of optimal size with the smallest error rate.
• We consider a sequence of trees indexed by a tuning parameter α.

For each value of α, there exists a unique subtree T of the full tree T0 that minimizes

RSS + α|T |
where |T | is the number of terminal nodes of the tree T .
• That is, α penalizes a tree based on its number of terminal nodes.
• As α increases from 0 (i.e. the full tree), branches get pruned in a predictable way,
making for relatively quick computation.
• We can find the optimal value of α using cross-validation

There are two ways to select the best subtree.

1 Choose the tree with smallest MSE.

2 Choose the smallest tree with MSE within 1 standard deviation of smallest MSE

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 6 / 20

Pruning Trees in R

Pruning Algorithm

Once a tree is fully grown, we prune it using cost-complexity tuning
• The goal is to find a tree of optimal size with the smallest error rate.
• We consider a sequence of trees indexed by a tuning parameter α.

For each value of α, there exists a unique subtree T of the full tree T0 that minimizes

RSS + α|T |
where |T | is the number of terminal nodes of the tree T .
• That is, α penalizes a tree based on its number of terminal nodes.
• As α increases from 0 (i.e. the full tree), branches get pruned in a predictable way,
making for relatively quick computation.
• We can find the optimal value of α using cross-validation

There are two ways to select the best subtree.

1 Choose the tree with smallest MSE.

2 Choose the smallest tree with MSE within 1 standard deviation of smallest MSE

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 6 / 20

Pruning Trees in R

Pruning Algorithm

Once a tree is fully grown, we prune it using cost-complexity tuning
• The goal is to find a tree of optimal size with the smallest error rate.
• We consider a sequence of trees indexed by a tuning parameter α.

For each value of α, there exists a unique subtree T of the full tree T0 that minimizes

RSS + α|T |
where |T | is the number of terminal nodes of the tree T .
• That is, α penalizes a tree based on its number of terminal nodes.
• As α increases from 0 (i.e. the full tree), branches get pruned in a predictable way,
making for relatively quick computation.
• We can find the optimal value of α using cross-validation

There are two ways to select the best subtree.

1 Choose the tree with smallest MSE.

2 Choose the smallest tree with MSE within 1 standard deviation of smallest MSE

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 6 / 20

Pruning Trees in R

Trees on Trees

We use a subset of the pdxTrees dataset from the pdxTrees repo (maintained by K.
McConville, I. Caldwell, and N. Horton)
• To keep things manageable, we’ll focus on trees in 3 parks nearby Reed.

library(pdxTrees)
my_pdxTrees <- get_pdxTrees_parks(park = c("Powel Park", "Woodstock Park", "Berkeley Park"))

• And use trees from another park as a test set:
my_pdxTrees_test <- get_pdxTrees_parks(park = c("Glenwood Park"))

• Can we predict carbon sequestration based on Tree_Height and Crown_Width_EW?

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 7 / 20

Pruning Trees in R

Trees on Trees

We use a subset of the pdxTrees dataset from the pdxTrees repo (maintained by K.
McConville, I. Caldwell, and N. Horton)
• To keep things manageable, we’ll focus on trees in 3 parks nearby Reed.

library(pdxTrees)
my_pdxTrees <- get_pdxTrees_parks(park = c("Powel Park", "Woodstock Park", "Berkeley Park"))

• And use trees from another park as a test set:
my_pdxTrees_test <- get_pdxTrees_parks(park = c("Glenwood Park"))

• Can we predict carbon sequestration based on Tree_Height and Crown_Width_EW?

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 7 / 20

Pruning Trees in R

Trees on Trees

We use a subset of the pdxTrees dataset from the pdxTrees repo (maintained by K.
McConville, I. Caldwell, and N. Horton)
• To keep things manageable, we’ll focus on trees in 3 parks nearby Reed.

library(pdxTrees)
my_pdxTrees <- get_pdxTrees_parks(park = c("Powel Park", "Woodstock Park", "Berkeley Park"))

• And use trees from another park as a test set:
my_pdxTrees_test <- get_pdxTrees_parks(park = c("Glenwood Park"))

• Can we predict carbon sequestration based on Tree_Height and Crown_Width_EW?

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 7 / 20

Pruning Trees in R

Pruning Example

How does MSE vary as tree size changes?

cp

X
−

va
l R

el
at

iv
e

E
rr

or

0.
6

0.
8

1.
0

1.
2

Inf 0.14 0.051 0.041 0.034 0.021 0.012 0.01

1 2 3 5 6 7 8 9

size of tree

• What are the test MSEs for the full tree and the subtrees with 5 and 7 terminal nodes?
A tibble: 3 x 4
model .metric .estimator .estimate
<chr> <chr> <chr> <dbl>
1 full rmse standard 20.3
2 pruned rmse standard 19.7
3 very pruned rmse standard 20.1

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 8 / 20

Pruning Trees in R

Comparison

Full Tree

Crown_Width_EW < 44

Crown_Width_EW < 29 Crown_Width_EW < 65

Tree_Height >= 91

Tree_Height < 82

Tree_Height >= 96

Tree_Height < 111 Tree_Height < 83

48
100%

25
45%

13
19%

35
25%

66
55%

57
36%

48
17%

66
19%

51
12%

96
6%

83
20%

67
9%

54
4%

79
5%

96
11%

75
3%

105
7%

yes no

Pruned Tree

Crown_Width_EW < 44

Crown_Width_EW < 29 Crown_Width_EW < 65

Tree_Height >= 91

Tree_Height < 82

Tree_Height >= 96

48
100%

25
45%

13
19%

35
25%

66
55%

57
36%

48
17%

66
19%

51
12%

96
6%

83
20%

67
9%

96
11%

yes no

Very Pruned Tree

Crown_Width_EW < 44

Crown_Width_EW < 65

Tree_Height >= 91

Tree_Height < 82

48
100%

25
45%

66
55%

57
36%

48
17%

66
19%

51
12%

96
6%

83
20%

yes no

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 9 / 20

Pruning Trees in R

Section 2

Trees in R

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 10 / 20

Pruning Trees in R

Creating Tree Models in R

There are two common packages for creating regression trees in R: tree and rpart.

• The tree package is one of the oldest packages on CRAN. It is a (tiny) bit easier to
use. But allows far less customization. ISLR uses tree. (Traditional)
• The rpart package is newer, computationally faster, and has more options. It also
can be combined with other packages for much nicer plots. Applied Predictive
Modeling uses rpart. (Recommended)

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 11 / 20

Pruning Trees in R

Creating Tree Models in R

There are two common packages for creating regression trees in R: tree and rpart.
• The tree package is one of the oldest packages on CRAN. It is a (tiny) bit easier to
use. But allows far less customization. ISLR uses tree. (Traditional)

• The rpart package is newer, computationally faster, and has more options. It also
can be combined with other packages for much nicer plots. Applied Predictive
Modeling uses rpart. (Recommended)

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 11 / 20

Pruning Trees in R

Creating Tree Models in R

There are two common packages for creating regression trees in R: tree and rpart.
• The tree package is one of the oldest packages on CRAN. It is a (tiny) bit easier to
use. But allows far less customization. ISLR uses tree. (Traditional)
• The rpart package is newer, computationally faster, and has more options. It also
can be combined with other packages for much nicer plots. Applied Predictive
Modeling uses rpart. (Recommended)

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 11 / 20

Pruning Trees in R

Trees using ‘rpart“

• To fit a tree using variables Tree_Height, Crown_Width_EW, Crown_Width_NS,
Crown_Base_Height:

set.seed(1)
library(rpart)
tree_model1 <- rpart(Carbon_Sequestration_lb ~

Tree_Height + Crown_Width_EW + Crown_Width_NS + Crown_Base_Height,
data = my_pdxTrees)

• We can change several features of the tree by adding a control argument:
set.seed(1)
tree_model2 <- rpart(Carbon_Sequestration_lb ~

Tree_Height + Crown_Width_EW + Crown_Width_NS + Crown_Base_Height,
control = rpart.control(minsplit = 30, xval = 10, maxdepth = 8),
data = my_pdxTrees)

• minsplit is the minimum number of observations in a node
• xval is the number of cross-validation folds used
• maxdepth is the maximum depth of any node in the final tree

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 12 / 20

Pruning Trees in R

Trees using ‘rpart“

• To fit a tree using variables Tree_Height, Crown_Width_EW, Crown_Width_NS,
Crown_Base_Height:

set.seed(1)
library(rpart)
tree_model1 <- rpart(Carbon_Sequestration_lb ~

Tree_Height + Crown_Width_EW + Crown_Width_NS + Crown_Base_Height,
data = my_pdxTrees)

• We can change several features of the tree by adding a control argument:
set.seed(1)
tree_model2 <- rpart(Carbon_Sequestration_lb ~

Tree_Height + Crown_Width_EW + Crown_Width_NS + Crown_Base_Height,
control = rpart.control(minsplit = 30, xval = 10, maxdepth = 8),
data = my_pdxTrees)

• minsplit is the minimum number of observations in a node
• xval is the number of cross-validation folds used
• maxdepth is the maximum depth of any node in the final tree

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 12 / 20

Pruning Trees in R

Trees using ‘rpart“

• To fit a tree using variables Tree_Height, Crown_Width_EW, Crown_Width_NS,
Crown_Base_Height:

set.seed(1)
library(rpart)
tree_model1 <- rpart(Carbon_Sequestration_lb ~

Tree_Height + Crown_Width_EW + Crown_Width_NS + Crown_Base_Height,
data = my_pdxTrees)

• We can change several features of the tree by adding a control argument:
set.seed(1)
tree_model2 <- rpart(Carbon_Sequestration_lb ~

Tree_Height + Crown_Width_EW + Crown_Width_NS + Crown_Base_Height,
control = rpart.control(minsplit = 30, xval = 10, maxdepth = 8),
data = my_pdxTrees)

• minsplit is the minimum number of observations in a node
• xval is the number of cross-validation folds used
• maxdepth is the maximum depth of any node in the final tree

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 12 / 20

Pruning Trees in R

Plots using plot

• There are several options for visualizing trees with varying ease-of-use and aesthetics.
• The base R plot function quickly generates plots, but. . .

plot(tree_model1)
text(tree_model1, pretty = 0, cex = .5)

|
Crown_Width_EW< 43.5

Crown_Width_NS< 31.5 Crown_Width_NS< 53.5

Tree_Height>=90

Tree_Height< 82

Crown_Width_NS>=89

Crown_Width_EW< 64.5

Tree_Height< 81

Tree_Height>=90.5

Crown_Base_Height>=8.5

Tree_Height< 88.5

11.69 34.79

41.27

51.31 105.7

38.6

52.84

59.39 93.03

81.72
91.24 127.9

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 13 / 20

Pruning Trees in R

Plots using plot

• There are several options for visualizing trees with varying ease-of-use and aesthetics.
• The base R plot function quickly generates plots, but. . .

plot(tree_model1)
text(tree_model1, pretty = 0, cex = .5)

|
Crown_Width_EW< 43.5

Crown_Width_NS< 31.5 Crown_Width_NS< 53.5

Tree_Height>=90

Tree_Height< 82

Crown_Width_NS>=89

Crown_Width_EW< 64.5

Tree_Height< 81

Tree_Height>=90.5

Crown_Base_Height>=8.5

Tree_Height< 88.5

11.69 34.79

41.27

51.31 105.7

38.6

52.84

59.39 93.03

81.72
91.24 127.9

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 13 / 20

Pruning Trees in R

Plots using rpart.plot

• An alternative to plot is the rpart.plot function from the package of the same
name:

library(rpart.plot)
rpart.plot(tree_model1)

Crown_Width_EW < 44

Crown_Width_NS < 32 Crown_Width_NS < 54

Tree_Height >= 90

Tree_Height < 82

Crown_Width_NS >= 89

Crown_Width_EW < 65

Tree_Height < 81

Tree_Height >= 91

Crown_Base_Height >= 9

Tree_Height < 89

48
100%

25
45%

12
18%

35
26%

66
55%

51
24%

41
14%

65
10%

51
7%

106
3%

78
31%

39
3%

82
28%

67
16%

53
5%

74
11%

59
6%

93
5%

101
12%

82
4%

111
8%

91
4%

128
4%

yes no

• Some further customization available (see ?rpart.plot)

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 14 / 20

Pruning Trees in R

Trees in R via rpart cont’d

• The rpart function automatically performs k-fold CV when choosing among
potential splits.

• To access results, append $cptable to the rpart model object:
tree_model1$cptable

CP nsplit rel error xerror xstd
1 0.31073097 0 1.0000000 1.0105895 0.09666964
2 0.07370105 1 0.6892690 0.7679112 0.07560215
3 0.04577064 2 0.6155680 0.7211540 0.07009241
4 0.04342290 4 0.5240267 0.6668256 0.06922100
5 0.03450324 5 0.4806038 0.6378779 0.06854061
6 0.01877027 7 0.4115973 0.6624756 0.08409966
7 0.01778685 9 0.3740568 0.7124886 0.09350971
8 0.01000000 11 0.3384831 0.7070176 0.09248091

• CP is the value of the complexity parameter
• nsplit is number of splits
• rel error is 1 − R2, using R2 = 1 − RSS

TSS
• xerror is cross-validated estimate of relative error
• xstd is the standard deviation in xerror based on CV

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 15 / 20

Pruning Trees in R

Trees in R via rpart cont’d

• The rpart function automatically performs k-fold CV when choosing among
potential splits.
• To access results, append $cptable to the rpart model object:

tree_model1$cptable

CP nsplit rel error xerror xstd
1 0.31073097 0 1.0000000 1.0105895 0.09666964
2 0.07370105 1 0.6892690 0.7679112 0.07560215
3 0.04577064 2 0.6155680 0.7211540 0.07009241
4 0.04342290 4 0.5240267 0.6668256 0.06922100
5 0.03450324 5 0.4806038 0.6378779 0.06854061
6 0.01877027 7 0.4115973 0.6624756 0.08409966
7 0.01778685 9 0.3740568 0.7124886 0.09350971
8 0.01000000 11 0.3384831 0.7070176 0.09248091

• CP is the value of the complexity parameter
• nsplit is number of splits
• rel error is 1 − R2, using R2 = 1 − RSS

TSS
• xerror is cross-validated estimate of relative error
• xstd is the standard deviation in xerror based on CV

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 15 / 20

Pruning Trees in R

Trees in R via rpart cont’d

• The rpart function automatically performs k-fold CV when choosing among
potential splits.
• To access results, append $cptable to the rpart model object:

tree_model1$cptable

CP nsplit rel error xerror xstd
1 0.31073097 0 1.0000000 1.0105895 0.09666964
2 0.07370105 1 0.6892690 0.7679112 0.07560215
3 0.04577064 2 0.6155680 0.7211540 0.07009241
4 0.04342290 4 0.5240267 0.6668256 0.06922100
5 0.03450324 5 0.4806038 0.6378779 0.06854061
6 0.01877027 7 0.4115973 0.6624756 0.08409966
7 0.01778685 9 0.3740568 0.7124886 0.09350971
8 0.01000000 11 0.3384831 0.7070176 0.09248091

• CP is the value of the complexity parameter
• nsplit is number of splits
• rel error is 1 − R2, using R2 = 1 − RSS

TSS
• xerror is cross-validated estimate of relative error
• xstd is the standard deviation in xerror based on CV

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 15 / 20

Pruning Trees in R

Analyze Results

• The printcp function displays key model information
printcp(tree_model1)

##
Regression tree:
rpart(formula = Carbon_Sequestration_lb ~ Tree_Height + Crown_Width_EW +
Crown_Width_NS + Crown_Base_Height, data = my_pdxTrees)
##
Variables actually used in tree construction:
[1] Crown_Base_Height Crown_Width_EW Crown_Width_NS Tree_Height
##
Root node error: 406713/307 = 1324.8
##
n= 307
##
CP nsplit rel error xerror xstd
1 0.310731 0 1.00000 1.01059 0.096670
2 0.073701 1 0.68927 0.76791 0.075602
3 0.045771 2 0.61557 0.72115 0.070092
4 0.043423 4 0.52403 0.66683 0.069221
5 0.034503 5 0.48060 0.63788 0.068541
6 0.018770 7 0.41160 0.66248 0.084100
7 0.017787 9 0.37406 0.71249 0.093510
8 0.010000 11 0.33848 0.70702 0.092481

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 16 / 20

Pruning Trees in R

Analyze Results cont’d

• Detailed listing of model parts can be accessed via summary:

summary(tree_model1)

Call:
rpart(formula = Carbon_Sequestration_lb ~ Tree_Height + Crown_Width_EW +
Crown_Width_NS + Crown_Base_Height, data = my_pdxTrees)
n= 307
##
CP nsplit rel error xerror xstd
1 0.31073097 0 1.0000000 1.0105895 0.09666964
2 0.07370105 1 0.6892690 0.7679112 0.07560215
3 0.04577064 2 0.6155680 0.7211540 0.07009241
4 0.04342290 4 0.5240267 0.6668256 0.06922100
5 0.03450324 5 0.4806038 0.6378779 0.06854061
6 0.01877027 7 0.4115973 0.6624756 0.08409966
7 0.01778685 9 0.3740568 0.7124886 0.09350971
8 0.01000000 11 0.3384831 0.7070176 0.09248091
##
Variable importance
Crown_Width_EW Crown_Width_NS Tree_Height Crown_Base_Height
38 28 24 10
##
Node number 1: 307 observations, complexity param=0.310731
mean=47.95081, MSE=1324.797
left son=2 (137 obs) right son=3 (170 obs)
Primary splits:
Crown_Width_EW < 43.5 to the left, improve=0.31073100, (0 missing)
Crown_Width_NS < 49.5 to the left, improve=0.28692940, (0 missing)
Tree_Height < 78.5 to the left, improve=0.16233240, (0 missing)
Crown_Base_Height < 4.5 to the left, improve=0.05039755, (0 missing)
Surrogate splits:
Crown_Width_NS < 43.5 to the left, agree=0.788, adj=0.526, (0 split)
Tree_Height < 45.5 to the left, agree=0.739, adj=0.416, (0 split)
Crown_Base_Height < 5.5 to the left, agree=0.629, adj=0.168, (0 split)
##
Node number 2: 137 observations, complexity param=0.0434229
mean=25.34964, MSE=389.2232
left son=4 (56 obs) right son=5 (81 obs)
Primary splits:
Crown_Width_NS < 31.5 to the left, improve=0.33119760, (0 missing)
Crown_Width_EW < 28.5 to the left, improve=0.29201530, (0 missing)
Tree_Height < 32.5 to the left, improve=0.18481170, (0 missing)
Crown_Base_Height < 15.5 to the left, improve=0.07603281, (0 missing)
Surrogate splits:
Crown_Width_EW < 27.5 to the left, agree=0.847, adj=0.625, (0 split)
Tree_Height < 37.5 to the left, agree=0.810, adj=0.536, (0 split)
Crown_Base_Height < 2.5 to the left, agree=0.635, adj=0.107, (0 split)
##
Node number 3: 170 observations, complexity param=0.07370105
mean=66.16471, MSE=1335.358
left son=6 (75 obs) right son=7 (95 obs)
Primary splits:
Crown_Width_NS < 53.5 to the left, improve=0.13204280, (0 missing)
Crown_Width_EW < 64.5 to the left, improve=0.10966530, (0 missing)
Tree_Height < 90.5 to the right, improve=0.07883100, (0 missing)
Crown_Base_Height < 15.5 to the right, improve=0.02142455, (0 missing)
Surrogate splits:
Crown_Width_EW < 56.5 to the left, agree=0.718, adj=0.360, (0 split)
Crown_Base_Height < 11.5 to the right, agree=0.624, adj=0.147, (0 split)
Tree_Height < 115 to the right, agree=0.612, adj=0.120, (0 split)
##
Node number 4: 56 observations
mean=11.69464, MSE=149.8387
##
Node number 5: 81 observations
mean=34.79012, MSE=336.691
##
Node number 6: 75 observations, complexity param=0.03450324
mean=51.22, MSE=762.2336
left son=12 (44 obs) right son=13 (31 obs)
Primary splits:
Tree_Height < 90 to the right, improve=0.18425150, (0 missing)
Crown_Width_EW < 68 to the left, improve=0.07516464, (0 missing)
Crown_Base_Height < 15.5 to the right, improve=0.06593795, (0 missing)
Crown_Width_NS < 42.5 to the left, improve=0.04223611, (0 missing)
Surrogate splits:
Crown_Base_Height < 5.5 to the right, agree=0.680, adj=0.226, (0 split)
Crown_Width_EW < 74.5 to the left, agree=0.627, adj=0.097, (0 split)
Crown_Width_NS < 49.5 to the left, agree=0.627, adj=0.097, (0 split)
##
Node number 7: 95 observations, complexity param=0.04577064
mean=77.96316, MSE=1472.297
left son=14 (8 obs) right son=15 (87 obs)
Primary splits:
Crown_Width_NS < 89 to the right, improve=0.09677324, (0 missing)
Tree_Height < 79.5 to the left, improve=0.09663359, (0 missing)
Crown_Width_EW < 64.5 to the left, improve=0.08443065, (0 missing)
Crown_Base_Height < 8.5 to the right, improve=0.03463073, (0 missing)
Surrogate splits:
Crown_Width_EW < 112 to the right, agree=0.958, adj=0.5, (0 split)
##
Node number 12: 44 observations
mean=41.27273, MSE=229.3993
##
Node number 13: 31 observations, complexity param=0.03450324
mean=65.33871, MSE=1178.734
left son=26 (23 obs) right son=27 (8 obs)
Primary splits:
Tree_Height < 82 to the left, improve=0.47980970, (0 missing)
Crown_Width_EW < 56.5 to the left, improve=0.12022870, (0 missing)
Crown_Base_Height < 8.5 to the left, improve=0.06734482, (0 missing)
Crown_Width_NS < 34 to the right, improve=0.02241826, (0 missing)
Surrogate splits:
Crown_Width_EW < 70.5 to the left, agree=0.871, adj=0.500, (0 split)
Crown_Base_Height < 9.5 to the left, agree=0.839, adj=0.375, (0 split)
##
Node number 14: 8 observations
mean=38.6, MSE=847
##
Node number 15: 87 observations, complexity param=0.04577064
mean=81.58276, MSE=1374.215
left son=30 (50 obs) right son=31 (37 obs)
Primary splits:
Crown_Width_EW < 64.5 to the left, improve=0.19819470, (0 missing)
Tree_Height < 79.5 to the left, improve=0.12996880, (0 missing)
Crown_Width_NS < 80.5 to the left, improve=0.07464973, (0 missing)
Crown_Base_Height < 8.5 to the right, improve=0.03347816, (0 missing)
Surrogate splits:
Crown_Width_NS < 69.5 to the left, agree=0.701, adj=0.297, (0 split)
Crown_Base_Height < 12.5 to the left, agree=0.609, adj=0.081, (0 split)
Tree_Height < 51.5 to the right, agree=0.598, adj=0.054, (0 split)
##
Node number 26: 23 observations
mean=51.31304, MSE=670.6237
##
Node number 27: 8 observations
mean=105.6625, MSE=447.9748
##
Node number 30: 50 observations, complexity param=0.01778685
mean=67.386, MSE=933.6504
left son=60 (16 obs) right son=61 (34 obs)
Primary splits:
Tree_Height < 81 to the left, improve=0.10668250, (0 missing)
Crown_Width_EW < 53 to the left, improve=0.05495141, (0 missing)
Crown_Width_NS < 66.5 to the right, improve=0.04686122, (0 missing)
Crown_Base_Height < 5.5 to the left, improve=0.04520770, (0 missing)
Surrogate splits:
Crown_Base_Height < 5.5 to the left, agree=0.72, adj=0.125, (0 split)
##
Node number 31: 37 observations, complexity param=0.01877027
mean=100.7676, MSE=1329.153
left son=62 (13 obs) right son=63 (24 obs)
Primary splits:
Crown_Base_Height < 8.5 to the right, improve=0.14780730, (0 missing)
Tree_Height < 83 to the left, improve=0.08120309, (0 missing)
Crown_Width_EW < 80.5 to the left, improve=0.05163244, (0 missing)
Crown_Width_NS < 80.5 to the left, improve=0.02733851, (0 missing)
Surrogate splits:
Tree_Height < 95 to the right, agree=0.703, adj=0.154, (0 split)
Crown_Width_NS < 61 to the left, agree=0.703, adj=0.154, (0 split)
##
Node number 60: 16 observations
mean=52.8375, MSE=340.9148
##
Node number 61: 34 observations, complexity param=0.01778685
mean=74.23235, MSE=1066.108
left son=122 (19 obs) right son=123 (15 obs)
Primary splits:
Tree_Height < 90.5 to the right, improve=0.26175650, (0 missing)
Crown_Width_NS < 66 to the right, improve=0.10829910, (0 missing)
Crown_Width_EW < 53 to the left, improve=0.10249460, (0 missing)
Crown_Base_Height < 9.5 to the right, improve=0.04865338, (0 missing)
Surrogate splits:
Crown_Width_NS < 60.5 to the right, agree=0.618, adj=0.133, (0 split)
Crown_Base_Height < 8.5 to the left, agree=0.618, adj=0.133, (0 split)
##
Node number 62: 13 observations
mean=81.72308, MSE=1057.383
##
Node number 63: 24 observations, complexity param=0.01877027
mean=111.0833, MSE=1173.488
left son=126 (11 obs) right son=127 (13 obs)
Primary splits:
Tree_Height < 88.5 to the left, improve=0.28402660, (0 missing)
Crown_Width_EW < 82.5 to the left, improve=0.25072600, (0 missing)
Crown_Width_NS < 71 to the right, improve=0.05756322, (0 missing)
Crown_Base_Height < 7.5 to the right, improve=0.01406687, (0 missing)
Surrogate splits:
Crown_Base_Height < 6.5 to the left, agree=0.667, adj=0.273, (0 split)
Crown_Width_NS < 81.5 to the left, agree=0.625, adj=0.182, (0 split)
Crown_Width_EW < 79 to the left, agree=0.583, adj=0.091, (0 split)
##
Node number 122: 19 observations
mean=59.38947, MSE=666.4041
##
Node number 123: 15 observations
mean=93.03333, MSE=939.8622
##
Node number 126: 11 observations
mean=91.23636, MSE=422.055
##
Node number 127: 13 observations
mean=127.8769, MSE=1193.989

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 17 / 20

Pruning Trees in R

Analyze Results cont’d

• Detailed listing of model parts can be accessed via summary:
summary(tree_model1)

Call:
rpart(formula = Carbon_Sequestration_lb ~ Tree_Height + Crown_Width_EW +
Crown_Width_NS + Crown_Base_Height, data = my_pdxTrees)
n= 307
##
CP nsplit rel error xerror xstd
1 0.31073097 0 1.0000000 1.0105895 0.09666964
2 0.07370105 1 0.6892690 0.7679112 0.07560215
3 0.04577064 2 0.6155680 0.7211540 0.07009241
4 0.04342290 4 0.5240267 0.6668256 0.06922100
5 0.03450324 5 0.4806038 0.6378779 0.06854061
6 0.01877027 7 0.4115973 0.6624756 0.08409966
7 0.01778685 9 0.3740568 0.7124886 0.09350971
8 0.01000000 11 0.3384831 0.7070176 0.09248091
##
Variable importance
Crown_Width_EW Crown_Width_NS Tree_Height Crown_Base_Height
38 28 24 10
##
Node number 1: 307 observations, complexity param=0.310731
mean=47.95081, MSE=1324.797
left son=2 (137 obs) right son=3 (170 obs)
Primary splits:
Crown_Width_EW < 43.5 to the left, improve=0.31073100, (0 missing)
Crown_Width_NS < 49.5 to the left, improve=0.28692940, (0 missing)
Tree_Height < 78.5 to the left, improve=0.16233240, (0 missing)
Crown_Base_Height < 4.5 to the left, improve=0.05039755, (0 missing)
Surrogate splits:
Crown_Width_NS < 43.5 to the left, agree=0.788, adj=0.526, (0 split)
Tree_Height < 45.5 to the left, agree=0.739, adj=0.416, (0 split)
Crown_Base_Height < 5.5 to the left, agree=0.629, adj=0.168, (0 split)
##
Node number 2: 137 observations, complexity param=0.0434229
mean=25.34964, MSE=389.2232
left son=4 (56 obs) right son=5 (81 obs)
Primary splits:
Crown_Width_NS < 31.5 to the left, improve=0.33119760, (0 missing)
Crown_Width_EW < 28.5 to the left, improve=0.29201530, (0 missing)
Tree_Height < 32.5 to the left, improve=0.18481170, (0 missing)
Crown_Base_Height < 15.5 to the left, improve=0.07603281, (0 missing)
Surrogate splits:
Crown_Width_EW < 27.5 to the left, agree=0.847, adj=0.625, (0 split)
Tree_Height < 37.5 to the left, agree=0.810, adj=0.536, (0 split)
Crown_Base_Height < 2.5 to the left, agree=0.635, adj=0.107, (0 split)
##
Node number 3: 170 observations, complexity param=0.07370105
mean=66.16471, MSE=1335.358
left son=6 (75 obs) right son=7 (95 obs)
Primary splits:
Crown_Width_NS < 53.5 to the left, improve=0.13204280, (0 missing)
Crown_Width_EW < 64.5 to the left, improve=0.10966530, (0 missing)
Tree_Height < 90.5 to the right, improve=0.07883100, (0 missing)
Crown_Base_Height < 15.5 to the right, improve=0.02142455, (0 missing)
Surrogate splits:
Crown_Width_EW < 56.5 to the left, agree=0.718, adj=0.360, (0 split)
Crown_Base_Height < 11.5 to the right, agree=0.624, adj=0.147, (0 split)
Tree_Height < 115 to the right, agree=0.612, adj=0.120, (0 split)
##
Node number 4: 56 observations
mean=11.69464, MSE=149.8387
##
Node number 5: 81 observations
mean=34.79012, MSE=336.691
##
Node number 6: 75 observations, complexity param=0.03450324
mean=51.22, MSE=762.2336
left son=12 (44 obs) right son=13 (31 obs)
Primary splits:
Tree_Height < 90 to the right, improve=0.18425150, (0 missing)
Crown_Width_EW < 68 to the left, improve=0.07516464, (0 missing)
Crown_Base_Height < 15.5 to the right, improve=0.06593795, (0 missing)
Crown_Width_NS < 42.5 to the left, improve=0.04223611, (0 missing)
Surrogate splits:
Crown_Base_Height < 5.5 to the right, agree=0.680, adj=0.226, (0 split)
Crown_Width_EW < 74.5 to the left, agree=0.627, adj=0.097, (0 split)
Crown_Width_NS < 49.5 to the left, agree=0.627, adj=0.097, (0 split)
##
Node number 7: 95 observations, complexity param=0.04577064
mean=77.96316, MSE=1472.297
left son=14 (8 obs) right son=15 (87 obs)
Primary splits:
Crown_Width_NS < 89 to the right, improve=0.09677324, (0 missing)
Tree_Height < 79.5 to the left, improve=0.09663359, (0 missing)
Crown_Width_EW < 64.5 to the left, improve=0.08443065, (0 missing)
Crown_Base_Height < 8.5 to the right, improve=0.03463073, (0 missing)
Surrogate splits:
Crown_Width_EW < 112 to the right, agree=0.958, adj=0.5, (0 split)
##
Node number 12: 44 observations
mean=41.27273, MSE=229.3993
##
Node number 13: 31 observations, complexity param=0.03450324
mean=65.33871, MSE=1178.734
left son=26 (23 obs) right son=27 (8 obs)
Primary splits:
Tree_Height < 82 to the left, improve=0.47980970, (0 missing)
Crown_Width_EW < 56.5 to the left, improve=0.12022870, (0 missing)
Crown_Base_Height < 8.5 to the left, improve=0.06734482, (0 missing)
Crown_Width_NS < 34 to the right, improve=0.02241826, (0 missing)
Surrogate splits:
Crown_Width_EW < 70.5 to the left, agree=0.871, adj=0.500, (0 split)
Crown_Base_Height < 9.5 to the left, agree=0.839, adj=0.375, (0 split)
##
Node number 14: 8 observations
mean=38.6, MSE=847
##
Node number 15: 87 observations, complexity param=0.04577064
mean=81.58276, MSE=1374.215
left son=30 (50 obs) right son=31 (37 obs)
Primary splits:
Crown_Width_EW < 64.5 to the left, improve=0.19819470, (0 missing)
Tree_Height < 79.5 to the left, improve=0.12996880, (0 missing)
Crown_Width_NS < 80.5 to the left, improve=0.07464973, (0 missing)
Crown_Base_Height < 8.5 to the right, improve=0.03347816, (0 missing)
Surrogate splits:
Crown_Width_NS < 69.5 to the left, agree=0.701, adj=0.297, (0 split)
Crown_Base_Height < 12.5 to the left, agree=0.609, adj=0.081, (0 split)
Tree_Height < 51.5 to the right, agree=0.598, adj=0.054, (0 split)
##
Node number 26: 23 observations
mean=51.31304, MSE=670.6237
##
Node number 27: 8 observations
mean=105.6625, MSE=447.9748
##
Node number 30: 50 observations, complexity param=0.01778685
mean=67.386, MSE=933.6504
left son=60 (16 obs) right son=61 (34 obs)
Primary splits:
Tree_Height < 81 to the left, improve=0.10668250, (0 missing)
Crown_Width_EW < 53 to the left, improve=0.05495141, (0 missing)
Crown_Width_NS < 66.5 to the right, improve=0.04686122, (0 missing)
Crown_Base_Height < 5.5 to the left, improve=0.04520770, (0 missing)
Surrogate splits:
Crown_Base_Height < 5.5 to the left, agree=0.72, adj=0.125, (0 split)
##
Node number 31: 37 observations, complexity param=0.01877027
mean=100.7676, MSE=1329.153
left son=62 (13 obs) right son=63 (24 obs)
Primary splits:
Crown_Base_Height < 8.5 to the right, improve=0.14780730, (0 missing)
Tree_Height < 83 to the left, improve=0.08120309, (0 missing)
Crown_Width_EW < 80.5 to the left, improve=0.05163244, (0 missing)
Crown_Width_NS < 80.5 to the left, improve=0.02733851, (0 missing)
Surrogate splits:
Tree_Height < 95 to the right, agree=0.703, adj=0.154, (0 split)
Crown_Width_NS < 61 to the left, agree=0.703, adj=0.154, (0 split)
##
Node number 60: 16 observations
mean=52.8375, MSE=340.9148
##
Node number 61: 34 observations, complexity param=0.01778685
mean=74.23235, MSE=1066.108
left son=122 (19 obs) right son=123 (15 obs)
Primary splits:
Tree_Height < 90.5 to the right, improve=0.26175650, (0 missing)
Crown_Width_NS < 66 to the right, improve=0.10829910, (0 missing)
Crown_Width_EW < 53 to the left, improve=0.10249460, (0 missing)
Crown_Base_Height < 9.5 to the right, improve=0.04865338, (0 missing)
Surrogate splits:
Crown_Width_NS < 60.5 to the right, agree=0.618, adj=0.133, (0 split)
Crown_Base_Height < 8.5 to the left, agree=0.618, adj=0.133, (0 split)
##
Node number 62: 13 observations
mean=81.72308, MSE=1057.383
##
Node number 63: 24 observations, complexity param=0.01877027
mean=111.0833, MSE=1173.488
left son=126 (11 obs) right son=127 (13 obs)
Primary splits:
Tree_Height < 88.5 to the left, improve=0.28402660, (0 missing)
Crown_Width_EW < 82.5 to the left, improve=0.25072600, (0 missing)
Crown_Width_NS < 71 to the right, improve=0.05756322, (0 missing)
Crown_Base_Height < 7.5 to the right, improve=0.01406687, (0 missing)
Surrogate splits:
Crown_Base_Height < 6.5 to the left, agree=0.667, adj=0.273, (0 split)
Crown_Width_NS < 81.5 to the left, agree=0.625, adj=0.182, (0 split)
Crown_Width_EW < 79 to the left, agree=0.583, adj=0.091, (0 split)
##
Node number 122: 19 observations
mean=59.38947, MSE=666.4041
##
Node number 123: 15 observations
mean=93.03333, MSE=939.8622
##
Node number 126: 11 observations
mean=91.23636, MSE=422.055
##
Node number 127: 13 observations
mean=127.8769, MSE=1193.989

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 17 / 20

Pruning Trees in R

CV Plots

• We can plot the results of cross-validation using plotcp:

plotcp(tree_model1)

cp

X
−

va
l R

el
at

iv
e

E
rr

or

0.
6

0.
8

1.
0

1.
2

Inf 0.15 0.058 0.045 0.039 0.025 0.018 0.013

1 2 3 5 6 8 10 12

size of tree

• The horizontal line is 1 SE above minimum relative error

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 18 / 20

Pruning Trees in R

CV Plots

• We can plot the results of cross-validation using plotcp:
plotcp(tree_model1)

cp

X
−

va
l R

el
at

iv
e

E
rr

or

0.
6

0.
8

1.
0

1.
2

Inf 0.15 0.058 0.045 0.039 0.025 0.018 0.013

1 2 3 5 6 8 10 12

size of tree

• The horizontal line is 1 SE above minimum relative error
Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 18 / 20

Pruning Trees in R

Pruning

• Based on the CV plot, 6 splits with CP = 0.039 gives the lowest error
• While 5 splits with CP = 0.045 gives least splits within 1 SE of best.

• We can prune our tree using the prune function with a given value of cp
pruned_tree <- prune(tree_model1, cp = 0.039)

Crown_Width_EW < 44

Crown_Width_NS < 32 Crown_Width_NS < 54

Tree_Height >= 90

Tree_Height < 82

Crown_Width_NS >= 89

Crown_Width_EW < 65

Tree_Height < 81

Tree_Height >= 91

Crown_Base_Height >= 9

Tree_Height < 89

48
100%

25
45%

12
18%

35
26%

66
55%

51
24%

41
14%

65
10%

51
7%

106
3%

78
31%

39
3%

82
28%

67
16%

53
5%

74
11%

59
6%

93
5%

101
12%

82
4%

111
8%

91
4%

128
4%

yes no

Crown_Width_EW < 44

Crown_Width_NS < 32 Crown_Width_NS < 54

Crown_Width_NS >= 89

Crown_Width_EW < 65

48
100%

25
45%

12
18%

35
26%

66
55%

51
24%

78
31%

39
3%

82
28%

67
16%

101
12%

yes no

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 19 / 20

Pruning Trees in R

Pruning

• Based on the CV plot, 6 splits with CP = 0.039 gives the lowest error
• While 5 splits with CP = 0.045 gives least splits within 1 SE of best.

• We can prune our tree using the prune function with a given value of cp

pruned_tree <- prune(tree_model1, cp = 0.039)

Crown_Width_EW < 44

Crown_Width_NS < 32 Crown_Width_NS < 54

Tree_Height >= 90

Tree_Height < 82

Crown_Width_NS >= 89

Crown_Width_EW < 65

Tree_Height < 81

Tree_Height >= 91

Crown_Base_Height >= 9

Tree_Height < 89

48
100%

25
45%

12
18%

35
26%

66
55%

51
24%

41
14%

65
10%

51
7%

106
3%

78
31%

39
3%

82
28%

67
16%

53
5%

74
11%

59
6%

93
5%

101
12%

82
4%

111
8%

91
4%

128
4%

yes no

Crown_Width_EW < 44

Crown_Width_NS < 32 Crown_Width_NS < 54

Crown_Width_NS >= 89

Crown_Width_EW < 65

48
100%

25
45%

12
18%

35
26%

66
55%

51
24%

78
31%

39
3%

82
28%

67
16%

101
12%

yes no

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 19 / 20

Pruning Trees in R

Pruning

• Based on the CV plot, 6 splits with CP = 0.039 gives the lowest error
• While 5 splits with CP = 0.045 gives least splits within 1 SE of best.

• We can prune our tree using the prune function with a given value of cp
pruned_tree <- prune(tree_model1, cp = 0.039)

Crown_Width_EW < 44

Crown_Width_NS < 32 Crown_Width_NS < 54

Tree_Height >= 90

Tree_Height < 82

Crown_Width_NS >= 89

Crown_Width_EW < 65

Tree_Height < 81

Tree_Height >= 91

Crown_Base_Height >= 9

Tree_Height < 89

48
100%

25
45%

12
18%

35
26%

66
55%

51
24%

41
14%

65
10%

51
7%

106
3%

78
31%

39
3%

82
28%

67
16%

53
5%

74
11%

59
6%

93
5%

101
12%

82
4%

111
8%

91
4%

128
4%

yes no

Crown_Width_EW < 44

Crown_Width_NS < 32 Crown_Width_NS < 54

Crown_Width_NS >= 89

Crown_Width_EW < 65

48
100%

25
45%

12
18%

35
26%

66
55%

51
24%

78
31%

39
3%

82
28%

67
16%

101
12%

yes no

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 19 / 20

Pruning Trees in R

Test Error Rates

• How well do models do on the test data?

• Let’s build a results data frame:
results <- data.frame(model = "full",

obs = my_pdxTrees_test$Carbon_Sequestration_lb,
preds = predict(tree_model1, my_pdxTrees_test))

results <- rbind(results,
data.frame(model = "pruned",

obs = my_pdxTrees_test$Carbon_Sequestration_lb,
preds = predict(pruned_tree, my_pdxTrees_test)))

• And use rmse from yardstick to assess:
library(yardstick)
results %>% group_by(model) %>% rmse(truth = obs, estimate = preds)

A tibble: 2 x 4
model .metric .estimator .estimate
<chr> <chr> <chr> <dbl>
1 full rmse standard 21.1
2 pruned rmse standard 19.2

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 20 / 20

Pruning Trees in R

Test Error Rates

• How well do models do on the test data?
• Let’s build a results data frame:

results <- data.frame(model = "full",
obs = my_pdxTrees_test$Carbon_Sequestration_lb,
preds = predict(tree_model1, my_pdxTrees_test))

results <- rbind(results,
data.frame(model = "pruned",

obs = my_pdxTrees_test$Carbon_Sequestration_lb,
preds = predict(pruned_tree, my_pdxTrees_test)))

• And use rmse from yardstick to assess:
library(yardstick)
results %>% group_by(model) %>% rmse(truth = obs, estimate = preds)

A tibble: 2 x 4
model .metric .estimator .estimate
<chr> <chr> <chr> <dbl>
1 full rmse standard 21.1
2 pruned rmse standard 19.2

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 20 / 20

Pruning Trees in R

Test Error Rates

• How well do models do on the test data?
• Let’s build a results data frame:

results <- data.frame(model = "full",
obs = my_pdxTrees_test$Carbon_Sequestration_lb,
preds = predict(tree_model1, my_pdxTrees_test))

results <- rbind(results,
data.frame(model = "pruned",

obs = my_pdxTrees_test$Carbon_Sequestration_lb,
preds = predict(pruned_tree, my_pdxTrees_test)))

• And use rmse from yardstick to assess:

library(yardstick)
results %>% group_by(model) %>% rmse(truth = obs, estimate = preds)

A tibble: 2 x 4
model .metric .estimator .estimate
<chr> <chr> <chr> <dbl>
1 full rmse standard 21.1
2 pruned rmse standard 19.2

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 20 / 20

Pruning Trees in R

Test Error Rates

• How well do models do on the test data?
• Let’s build a results data frame:

results <- data.frame(model = "full",
obs = my_pdxTrees_test$Carbon_Sequestration_lb,
preds = predict(tree_model1, my_pdxTrees_test))

results <- rbind(results,
data.frame(model = "pruned",

obs = my_pdxTrees_test$Carbon_Sequestration_lb,
preds = predict(pruned_tree, my_pdxTrees_test)))

• And use rmse from yardstick to assess:
library(yardstick)
results %>% group_by(model) %>% rmse(truth = obs, estimate = preds)

A tibble: 2 x 4
model .metric .estimator .estimate
<chr> <chr> <chr> <dbl>
1 full rmse standard 21.1
2 pruned rmse standard 19.2

Nate Wells (Math 243: Stat Learning) Classification and Regression Trees November 8th, 2021 20 / 20

	Pruning
	Trees in R

