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Outline

In today’s class, we will. ..
® |nvestigate the relationship between selection bias and feature selection

® Discuss data from homework 3 (Ames House Prices)
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Inference?

Consider the solubility data contain chemical structure for 951 compounds.
® Suppose | use best subset selection and find that the best model has two variables:

## Call:
## 1m(formula = Solubility ~ MolWeight + NumCarbon, data = solTrain)

## Residuals:
# Min 1Q Median 3Q Max
## -5.9457 -0.8693 0.2089 0.9791 6.9006

## Coefficients:

## Estimate Std. Error t value Pr(>[tl)

## (Intercept) 0.0638181 0.1180806 0.540 0.589

## MolWeight  -0.0093029 0.0008226 -11.309 < 2e-16 **x

## NumCarbon -0.0916261 0.01521561 -6.022 2.46e-09 ***

## -

## Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

## Residual standard error: 1.563 on 948 degrees of freedom
## Multiple R-squared: 0.4181, Adjusted R-squared: 0.4169
## F-statistic: 340.6 on 2 and 948 DF, p-value: < 2.2e-16
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® Suppose | use best subset selection and find that the best model has two variables:

Call:
Ilm(formula = Solubility ~ MolWeight + NumCarbon, data = solTrain)

Residuals:
Min 1Q Median 3Q Max
-5.9457 -0.8693 0.2089 0.9791 6.9006

Coefficients:

Estimate Std. Error t value Pr(>[tl)
(Intercept) 0.0638181 0.1180806 0.540 0.589
MolWeight  -0.0093029 0.0008226 -11.309 < 2e-16 **x*
NumCarbon -0.0916261 0.01521561 -6.022 2.46e-09 ***

Signif. codes: 0 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.563 on 948 degrees of freedom

Multiple R-squared: 0.4181, Adjusted R-squared: 0.4169
F-statistic: 340.6 on 2 and 948 DF, p-value: < 2.2e-16

® Can | conclude that MolWeight has a statistically significant linear relationship with
Solubility, in the presence of NumCarbon, at the 0.001 level?

® Can | conclude that the F test is statistically significant at the 0.001 level?
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The Problem of Multiple Comparisons

JELY BEANS WE FOUNDNO THAT SETLES THAT.
CAUSE ACNE! LINK BETWEEN L
THEAR ITS
SCIENTISTS! JEWLY BEANS AND A CERTAN Cg{‘g';l
INVESTGATE! | | AGNE (P> 0.05). THAT CAUSES IT.
BUT WeERE
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The Problem of Multiple Comparisons
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The Problem of Multiple Comparisons

WE FOUND NG WE FOUND NO WE FOUND NGO WE FOUND A WE FOUND NG
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The Problem of Multiple Comparisons
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Feature Selection and Overfitting

® Feature selection algorithms must be considered as part of model building process.
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Feature Selection and Overfitting

® Feature selection algorithms must be considered as part of model building process.
® Performing feature selection can add considerable variability into model predictions.

® Feature selection is extremely flexible, hence, very susceptible to overfitting.
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Feature Selection and Overfitting

® Feature selection algorithms must be considered as part of model building process.
® Performing feature selection can add considerable variability into model predictions.

® Feature selection is extremely flexible, hence, very susceptible to overfitting.

® Consider: How would the results of the feature selection process change if different
training data were used
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Feature Selection and Overfitting

® Feature selection algorithms must be considered as part of model building process.
® Performing feature selection can add considerable variability into model predictions.
® Feature selection is extremely flexible, hence, very susceptible to overfitting.

® Consider: How would the results of the feature selection process change if different
training data were used

® Feature selection gives woefully optimistic estimate of any error metric measured on
training data.

® What other model-building algorithm has this problem?
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Feature Selection and Overfitting

® Feature selection algorithms must be considered as part of model building process.
® Performing feature selection can add considerable variability into model predictions.

® Feature selection is extremely flexible, hence, very susceptible to overfitting.

® Consider: How would the results of the feature selection process change if different
training data were used

Feature selection gives woefully optimistic estimate of any error metric measured on
training data.

® What other model-building algorithm has this problem?

The fix?

Nate Wells (Math 243: Stat Learning) Selection Bias October 6th, 2021 9/16



Selection Bias
0O00000e00

Feature Selection and Overfitting

® Feature selection algorithms must be considered as part of model building process.
® Performing feature selection can add considerable variability into model predictions.
® Feature selection is extremely flexible, hence, very susceptible to overfitting.

® Consider: How would the results of the feature selection process change if different
training data were used

Feature selection gives woefully optimistic estimate of any error metric measured on
training data.

® What other model-building algorithm has this problem?
The fix?

® Error estimates must be made using cross-validation and inference performed using
bootstrapping.
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Feature Selection and Overfitting

Feature selection algorithms must be considered as part of model building process.
® Performing feature selection can add considerable variability into model predictions.

® Feature selection is extremely flexible, hence, very susceptible to overfitting.

® Consider: How would the results of the feature selection process change if different
training data were used

Feature selection gives woefully optimistic estimate of any error metric measured on
training data.

® What other model-building algorithm has this problem?

The fix?

® Error estimates must be made using cross-validation and inference performed using
bootstrapping.

® However, the entire feature selection process must be independently performed on each
fold / bootstrap.
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An lllustration of Resampling for Feature Selection
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Conclusions

Is automated feature selection worth it?

Nate Wells (Math 243: Stat Learning)

Selection Bias October 6th, 2021 11/16



Selection Bias
0O0000000e

Conclusions

Is automated feature selection worth it?
® Benefits:
® Has intuitive appeal

® In situations where prediction is goal, can sometimes lead to more accurate predictions
(especially when combined with cross-validation)
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Conclusions

Is automated feature selection worth it?

® Benefits:
® Has intuitive appeal

® In situations where prediction is goal, can sometimes lead to more accurate predictions
(especially when combined with cross-validation)

® Drawbacks:
® Yields overly optimistic R2.
® p-values reported are meaningless
® prediction intervals are too narrow
® Very unstable under collinearity
® Model coefficients are often too high

® Amplifies “regression to the mean” effect

® There are other methods that perform feature selection without these problems

Nate Wells ing, Selection Bias October 6th, 2021



Ames House Price Data

@0000

Section 2

Ames House Price Data
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Overview

® Students fit models of varying complexity based on data on 66 predictors for 1808
houses.
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Overview

® Students fit models of varying complexity based on data on 66 predictors for 1808
houses.

® Models were assesses by computing rMSE on a test set of 597 houses.

® Additionally, to assess variability, rMSE was computed on 20 bootstrap samples from
the test data.
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Overview

® Students fit models of varying complexity based on data on 66 predictors for 1808
houses.

® Models were assesses by computing rMSE on a test set of 597 houses.

® Additionally, to assess variability, rMSE was computed on 20 bootstrap samples from
the test data.

® The median model rMSE was $32,916.

® The median model standard deviation in rMSE on bootstrap samples was $2, 409.
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Overview

® Students fit models of varying complexity based on data on 66 predictors for 1808
houses.

® Models were assesses by computing rMSE on a test set of 597 houses.

® Additionally, to assess variability, rMSE was computed on 20 bootstrap samples from
the test data.

® The median model rMSE was $32,916.
® The median model standard deviation in rMSE on bootstrap samples was $2, 409.

® The lowest three model rMSE were
Name Taylor Maxwell Robin

fMSE  $23,722 $23,920 $24,388
SD  $1,626  $1,823  $1,580
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Model rMSE, Based on 20 Bootstraps from Test Data
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Model rMSE, Based on 20 Bootstraps from Test Data
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Retrospective

Trends:

® Models with more predictors tended to do better than models with fewer predictors
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Retrospective

Trends:
® Models with more predictors tended to do better than models with fewer predictors

® Models with 0 interaction terms tended to do better than those with 1 interaction
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Retrospective

Trends:
® Models with more predictors tended to do better than models with fewer predictors
® Models with 0 interaction terms tended to do better than those with 1 interaction

® Models that transformed key predictors tended to do better than those that did not
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Retrospective

Trends:
® Models with more predictors tended to do better than models with fewer predictors
® Models with O interaction terms tended to do better than those with 1 interaction
® Models that transformed key predictors tended to do better than those that did not

® Performing log or root transformation moderately reduced test MSE
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Retrospective

Trends:
® Models with more predictors tended to do better than models with fewer predictors
® Models with 0 interaction terms tended to do better than those with 1 interaction

® Models that transformed key predictors tended to do better than those that did not

Performing log or root transformation moderately reduced test MSE

The full model was near the front of the pack, while the simple model using just 1
predictor (Gr_Liv_Area) was at the back.
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Retrospective

Trends:
® Models with more predictors tended to do better than models with fewer predictors
® Models with O interaction terms tended to do better than those with 1 interaction
® Models that transformed key predictors tended to do better than those that did not
® Performing log or root transformation moderately reduced test MSE

® The full model was near the front of the pack, while the simple model using just 1
predictor (Gr_Liv_Area) was at the back.

Further Investigation (Homework 5):
® Use regsubsets to assist with feature selection

® Use a cross-validation to assess and compare model performance
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