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Outline

In today's class, we will. ..
® Perform some exploratory data analysis on a new data set

® |nvestigate algorithms for selecting good subsets of predictors
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Explaratory Data Analysis
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Molecular Solubility

The solubility data set from the AppliedPredictiveModeling package contains
solubility and chemical structure for a sample of 1,267 different compounds.
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Molecular Solubility

The solubility data set from the AppliedPredictiveModeling package contains
solubility and chemical structure for a sample of 1,267 different compounds.

library(AppliedPredictiveModeling)
data(solubility)
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Molecular Solubility

The solubility data set from the AppliedPredictiveModeling package contains
solubility and chemical structure for a sample of 1,267 different compounds.

library(AppliedPredictiveModeling)
data(solubility)

® The solubility of a compound indicates how easily it dissolves in a solvent (often

water), and is measured as the amount of solvent required to dissolve 1 part of the
compound.

® The less solvent required, the more soluble the compound.

® |n the dataset, the log solubility is reported, since solubility spans many orders of
magnitude
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The solubility data set from the AppliedPredictiveModeling package contains
solubility and chemical structure for a sample of 1,267 different compounds.

library(AppliedPredictiveModeling)
data(solubility)

® The solubility of a compound indicates how easily it dissolves in a solvent (often

water), and is measured as the amount of solvent required to dissolve 1 part of the
compound.

® The less solvent required, the more soluble the compound.

® |n the dataset, the log solubility is reported, since solubility spans many orders of
magnitude

® The data also contains 16 chemical count descriptors, such as “number of bonds” or
“number of bromine atoms”
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Molecular Solubility

The solubility data set from the AppliedPredictiveModeling package contains
solubility and chemical structure for a sample of 1,267 different compounds.

library(AppliedPredictiveModeling)
data(solubility)

® The solubility of a compound indicates how easily it dissolves in a solvent (often
water), and is measured as the amount of solvent required to dissolve 1 part of the
compound.

® The less solvent required, the more soluble the compound.

® |n the dataset, the log solubility is reported, since solubility spans many orders of
magnitude

® The data also contains 16 chemical count descriptors, such as “number of bonds” or
“number of bromine atoms”

® Finally, the data contains 4 continuous descriptors, such as “molecular weight” or
“surface area”
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Molecular Solubility

The solubility data set from the AppliedPredictiveModeling package contains
solubility and chemical structure for a sample of 1,267 different compounds.

library(AppliedPredictiveModeling)
data(solubility)

® The solubility of a compound indicates how easily it dissolves in a solvent (often

water), and is measured as the amount of solvent required to dissolve 1 part of the
compound.

® The less solvent required, the more soluble the compound.

® |n the dataset, the log solubility is reported, since solubility spans many orders of
magnitude

® The data also contains 16 chemical count descriptors, such as “number of bonds” or
“number of bromine atoms”

® Finally, the data contains 4 continuous descriptors, such as “molecular weight” or
“surface area”

We are interested in determining solubility based on these 20 chemical descriptors.
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Pre-Processing

® The solubability actually consists of 4 data sets: solTestX, solTrainX,
solTestY, solTrainY
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Pre-Processing

® The solubability actually consists of 4 data sets: solTestX, solTrainX,
solTestY, solTrainY

® The X and Y indicate the data is pre-divided into separate sets for predictors and
response.

® Additionally, data have already been partitioned into test and training sets (25 / 75)

® |t will be easier to have predictors and response in the same set, so we'll bind columns

together:
solTest <- data.frame(solTestX, solTestY)
solTrain <- data.frame(solTrainX, solTrainY)
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® The X and Y indicate the data is pre-divided into separate sets for predictors and
response.

® Additionally, data have already been partitioned into test and training sets (25 / 75)

® |t will be easier to have predictors and response in the same set, so we'll bind columns

together:
solTest <- data.frame(solTestX, solTestY)
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Pre-Processing

® The solubability actually consists of 4 data sets: solTestX, solTrainX,
solTestY, solTrainY

® The X and Y indicate the data is pre-divided into separate sets for predictors and
response.

® Additionally, data have already been partitioned into test and training sets (25 / 75)

® |t will be easier to have predictors and response in the same set, so we'll bind columns

together:
solTest <- data.frame(solTestX, solTestY)
solTrain <- data.frame(solTrainX, solTrainY)

® The data also contains 218 binary “fingerprints” for each compound indicating
presence of particular chemical substructure, each beginning with “FP”

® We'll ignore these predictors.

solTest <- solTest %>% select(!starts_with("FP"))
solTrain <- solTrain %>% select(!starts_with("FP"))
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Distribution of Response

We'll take a look just at the training data for now. (Why?)
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Distribution of Response

We'll take a look just at the training data for now. (Why?)

Distribution of Solubility
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Pairwise Scatterplots
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Correlation Matrix

library(GGally)
ggeorr(solTrain, 1, 2, 5)
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Collinearity

® What are downsides of fitting the full model?
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Collinearity

® What are downsides of fitting the full model?

® |let's do it anyway!
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Model Summary

##

## Call:

## Im(formula = Solubility ~ ., data = solTrain)

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.8499 -0.5963 0.0232 0.5842 2.7848

##

## Coefficients: (3 not defined because of singularities)

## Estimate Std. Error t value Pr(>ltl)

## (Intercept) 0.344876  0.149393  2.309 0.021189 *
## MolWeight -0.008074  0.001325 -6.093 1.61e-09 **x
## NumAtoms 0.275577  0.086182  3.198 0.001432 **
## NumNonHAtoms 1.536062  0.450948  3.406 0.000687 *+*
## NumBonds -0.612747  0.127856 -4.792 1.92e-06 **x
## NumNonHBonds NA NA NA NA

## NumMultBonds -1.694110  0.321514 -5.269 1.70e-07 **x
## NumRotBonds -0.147637  0.026894 -5.490 5.19e-08 **x
## NumDblBonds 0.771793  0.234853  3.286 0.001053 *x*
## NumAromaticBonds  1.278539  0.277614  4.605 4.69e-06 %%k
## NumHydrogen NA NA NA NA

## NumCarbon -0.650678  0.331825 -1.961 0.050187

## NumNitrogen -0.222086  0.373396 -0.595 0.552140

## NumOxygen -0.300338  0.424632 -0.707 0.479563

## NumSulfer 0.621244  0.298101  2.084 0.037432 *
## NumChlorine -0.374042 0.061636 -6.069 1.87e-09 *¥x
## NumHalogen -1.579937  0.459350 -3.440 0.000609 ***
## NumRings NA NA NA NA

## HydrophilicFactor 0.162663 0.073229  2.221 0.026570 *
## SurfaceAreal 0.047692  0.013827  3.449 0.000587 *xx
## SurfaceArea2 -0.070007  0.013245 -5.285 1.56e-07 *kx
## -

## Signif. codes: 0 'skk' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 0.9044 on 933 degrees of freedom
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Model Summary

##

## Call:

## 1n(formula = Solubility ~ . - NumNonHBonds - NumHydrogen - NumRings,
## data = solTrain)

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.8499 -0.5963 0.0232 0.5842 2.7848

##

## Coefficients:

## Estimate Std. Error t value Pr(>|tl)

## (Intercept) 0.344876 0.149393 2.309 0.021189 *
## MolWeight -0.008074 0.001325 -6.093 1.61e-09 ***
## NumAtoms 0.275577 0.086182 3.198 0.001432 *x*
## NumNonHAtoms 1.536062 0.450948  3.406 0.000687 ***
## NumBonds -0.612747 0.127856 -4.792 1.92e-06 **x*
## NumMultBonds -1.694110 0.321514 -5.269 1.70e-07 **x
## NumRotBonds -0.147637 0.026894 -5.490 5.19e-08 *xx
## NumDblBonds 0.771793  0.234853  3.286 0.001053 *x*
## NumAromaticBonds 1.278539 0.277614  4.605 4.69e-06 ***
## NumCarbon -0.650678 0.331825 -1.961 0.050187 .
## NumNitrogen -0.222086 0.373396 -0.595 0.552140

## NumOxygen -0.300338 0.424632 -0.707 0.479563

## NumSulfer 0.621244 0.298101 2.084 0.037432 *
## NumChlorine -0.374042 0.061636 -6.069 1.87e-09 **x*
## NumHalogen -1.579937 0.459350 -3.440 0.000609 ***
## HydrophilicFactor 0.162663 0.073229 2.221 0.026570 *
## SurfaceAreal 0.047692 0.013827  3.449 0.000587 **x
## SurfaceArea2 -0.070007 0.013245 -5.285 1.56e-07 *xx
## -

## Signif. codes: O '#**' 0.001 '#*' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 0.9044 on 933 degrees of freedom
## Multiple R-squared: 0.8082, Adjusted R-squared: 0.8047
## F-statistic: 231.3 on 17 and 933 DF, p-value: < 2.2e-16
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Model Diagnostics

library(gglm)
gglm(sol_mod)
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Methodology

Suppose we wish to find a linear model for Y with p predictors X, ..., X,. How do we
determine the optimal collection of predictors?
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Methodology

Suppose we wish to find a linear model for Y with p predictors X, ..., X,. How do we
determine the optimal collection of predictors?

® First, determine an appropriate selection criteria.
® Cross-validation: Computationally expensive, but likely most accurate
® Validation set: Subject to variability in test/training split (but ok for large data)

® Adjusted R2: Penalizes non-helpful predictors, but may overestimate test error rate.
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Methodology

Suppose we wish to find a linear model for Y with p predictors X, ..., X,. How do we
determine the optimal collection of predictors?
® First, determine an appropriate selection criteria.
® Cross-validation: Computationally expensive, but likely most accurate
® Validation set: Subject to variability in test/training split (but ok for large data)
® Adjusted R2: Penalizes non-helpful predictors, but may overestimate test error rate.
® Cp: penalizes training RSS by typical discrepancy between test and training.

1
Cp = = (RSS + 2d5?)

n
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Methodology

Suppose we wish to find a linear model for Y with p predictors X, ..., X,. How do we
determine the optimal collection of predictors?

® First, determine an appropriate selection criteria.
® Cross-validation: Computationally expensive, but likely most accurate
® Validation set: Subject to variability in test/training split (but ok for large data)
® Adjusted R2: Penalizes non-helpful predictors, but may overestimate test error rate.

® Cp: penalizes training RSS by typical discrepancy between test and training.

_1

Cp = = (RSS + 2d5?)

n

® Akaike information criterion (AIC): uses method of maximum likelihood, assuming
Normal errors

1
AIC = —=(RSS + 2d5?)
no
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Methodology

Suppose we wish to find a linear model for Y with p predictors X, ..., X,. How do we
determine the optimal collection of predictors?

® First, determine an appropriate selection criteria.
® Cross-validation: Computationally expensive, but likely most accurate
® Validation set: Subject to variability in test/training split (but ok for large data)
® Adjusted R2: Penalizes non-helpful predictors, but may overestimate test error rate.

® Cp: penalizes training RSS by typical discrepancy between test and training.

_1

Cp = = (RSS + 2d5?)

n

® Akaike information criterion (AIC): uses method of maximum likelihood, assuming
Normal errors

1
AIC = —=(RSS + 2d5?)
no

® Bayesian information criterion (BIC): uses method of maximum likelihood and Bayes’
Rule

1
BIC = —(RSS + In nd6?)
no
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Best Subset

With p predictors, there are a total of 2P possible MLR models.

® There are (’;) models using exactly k of p predictors
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With p predictors, there are a total of 2P possible MLR models.

® There are (’;) models using exactly k of p predictors

Theoretically, we can find the best model by fitting each possible model and selecting the
best via appropriate selection criteria (Cp, AIC, BIC, R?, Ccv)
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With p predictors, there are a total of 2P possible MLR models.
® There are (’;) models using exactly k of p predictors

Theoretically, we can find the best model by fitting each possible model and selecting the
best via appropriate selection criteria (Cp, AIC, BIC, R?, Ccv)

Downsides?
® Computation time and storage grows exponentially in p

® May have low marginal improvement despite number of models fitted
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Best Subset

With p predictors, there are a total of 2P possible MLR models.
® There are (’;) models using exactly k of p predictors

Theoretically, we can find the best model by fitting each possible model and selecting the
best via appropriate selection criteria (Cp, AIC, BIC, R?, Ccv)

Downsides?
® Computation time and storage grows exponentially in p
® May have low marginal improvement despite number of models fitted

® We are performing a large number of tests, which corresponds to a relatively flexible
model. Likely to overfit.
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Best Subset in R

We use the regsubsets function in the leaps library.
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Best Subset in R

We use the regsubsets function in the leaps library.

® regsubsets uses the same syntax as Im. The summary function outputs the best set
of variables for the given number of predictors, across the range supplied
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Best Subset in R

We use the regsubsets function in the leaps library.

® regsubsets uses the same syntax as Im. The summary function outputs the best set
of variables for the given number of predictors, across the range supplied

® Be default, regsubsets only returns up to the best eight models. But nvmax can be
used to return as many variables as desired
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Best Subset in R

We use the regsubsets function in the leaps library.
® regsubsets uses the same syntax as Im. The summary function outputs the best set

of variables for the given number of predictors, across the range supplied

Be default, regsubsets only returns up to the best eight models. But nvmax can be
used to return as many variables as desired

The best model for each number of predictors is determined by RSS
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Best Subset in R

We use the regsubsets function in the leaps library.

® regsubsets uses the same syntax as Im. The summary function outputs the best set
of variables for the given number of predictors, across the range supplied

® Be default, regsubsets only returns up to the best eight models. But nvmax can be
used to return as many variables as desired

® The best model for each number of predictors is determined by RSS

® The regsubsets function returns RSS, R?, C,, AIC, BIC for the best model of each
number of predicts.
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Best Subset in R

We use the regsubsets function in the leaps library.

® regsubsets uses the same syntax as Im. The summary function outputs the best set
of variables for the given number of predictors, across the range supplied

® Be default, regsubsets only returns up to the best eight models. But nvmax can be
used to return as many variables as desired

® The best model for each number of predictors is determined by RSS

® The regsubsets function returns RSS, R?, C,, AIC, BIC for the best model of each
number of predicts.

® The overall best model can be selected using any of these criteria.
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Best Subset in R

We use the regsubsets function in the leaps library.

® regsubsets uses the same syntax as Im. The summary function outputs the best set
of variables for the given number of predictors, across the range supplied

® Be default, regsubsets only returns up to the best eight models. But nvmax can be
used to return as many variables as desired

® The best model for each number of predictors is determined by RSS

® The regsubsets function returns RSS, R?, C,, AIC, BIC for the best model of each
number of predicts.

® The overall best model can be selected using any of these criteria.

® Why does regsubsets only use RSS to determine best model for each number
predictors?

Nate Wells (Math 243: Stat Learning) Feature Selection October 4th, 2021 16 /29



Subset Selection
0000®000000000000

Using regsubsets

library(leaps)
best_subset<-regsubsets(Solubility~.-NumNonHBonds -NumHydrogen -NumRings,
solTrain, 17)
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Using regsubsets

library(leaps)
best_subset<-regsubsets(Solubility~.-NumNonHBonds -NumHydrogen -NumRings,
solTrain, 17)

® The regsubsets function itself outputs a special regsubsets object, which contains
data but is not user-accessible.

Nate Wells (Math 243: Stat Learning) Feature Selection October 4th, 2021 17/29



Subset Selection
0000®000000000000

Using regsubsets

library(leaps)
best_subset<-regsubsets(Solubility~.-NumNonHBonds -NumHydrogen -NumRings,
solTrain, 17)

® The regsubsets function itself outputs a special regsubsets object, which contains
data but is not user-accessible.

® We'll use the summary function, which provides the following elements:
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Using regsubsets

library(leaps)
best_subset<-regsubsets(Solubility~.-NumNonHBonds -NumHydrogen -NumRings,
solTrain, 17)

® The regsubsets function itself outputs a special regsubsets object, which contains
data but is not user-accessible.

® We'll use the summary function, which provides the following elements:
® yhich: a list of which predictors are in each model
® outmat: a version of which for printing

® Several metrics: rsq, rss, adjr2, cp, bic
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Summary of regsubsets

® Stars indicate variable is included in model.

® For readability, I've only shown models with 5 or fewer variables
summary (best_subset) $outmat

## MolWeight NumAtoms NumNonHAtoms NumBonds NumMultBonds NumRotBonds
## nyen won won won won won

##
##
##
##
## NumDblBonds NumAromaticBonds NumCarbon NumNitrogen NumOxygen NumSulfer
##
##
##
##
##
## NumChlorine NumHalogen HydrophilicFactor SurfaceAreal SurfaceArea2
##
##
##
##
##

Ny non non non non non
Ny non non non Ny non

non non Nyt non non non
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non won non Hyen Nyen non
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Other Selection Metrics

The summary function can return selection metrics for each model.

d <- data.frame( 1:17,
summary (best_subset)$adjr2,
summary (best_subset) $rss,
summary (best_subset) $cp,
summary (best_subset) $bic)
d %>% head()

##  model adjr2 rss cp bic
# 1 1 0.3952106 2404.1073 1992.4929 -465.5206
#H 2 2 0.6590876 1353.7381 710.2104 -1004.8309
## 3 3 0.7120856 1142.0806 453.4176 -1159.6606
## 4 4 0.7447217 1011.5526 295.8216 -1268.2214
## 5 5 0.7742668 893.5334 153.5199 -1379.3431
##* 6 6 0.7813296 864.6602 120.2167 -1403.7232
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The variables present can also be plotted directly using plot:

plot(best_subset,

"adjr2")
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Vizualizing Variables

The variables present can also be plotted directly using plot:
plot(best_subset, "adjr2")
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® Models are ordered by by selection statistic. Dark rectangles indicate variable presence
20/29
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Plotting

We can use ggplot?2 to visualize selection metric as a function of variable number

ggplot(d, aes( model, adjr2))+geom_line()+theme_bw ()
0.8
074
o
5 0.6
©
054
0.44 ! ! !
5 10 15
model
ggplot(d, aes( model, rss))+geom_line()+theme_bw()
2000
192}
2 1500
1000
5 10 15
model
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cp))+geom_line () +theme_bw()
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Finding Best Subset

® To calculate the absolute best cp, bic, etc. we use either the which.min or
which.max function
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Finding Best Subset

® To calculate the absolute best cp, bic, etc. we use either the which.min or
which.max function
adjr2.max <- which.max(summary(best_subset)$adjr2)
rss.min <- which.min(summary(best_subset)$rss)
cp.min <- which.min(summary(best_subset)$cp)
bic.min <- which.min(summary(best_subset)$bic)
data.frame(adjr2.max, rss.min, cp.min, bic.min)

## adjr2.max rss.min cp.min bic.min
## 1 15 17 15 9
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Finding Best Subset

® To calculate the absolute best cp, bic, etc. we use either the which.min or
which.max function
adjr2.max <- which.max(summary(best_subset)$adjr2)
rss.min <- which.min(summary(best_subset)$rss)
cp.min <- which.min(summary(best_subset)$cp)
bic.min <- which.min(summary(best_subset)$bic)
data.frame(adjr2.max, rss.min, cp.min, bic.min)

## adjr2.max rss.min cp.min bic.min
## 1 15 17 15 9

® So what model is best?
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Finding Best Subset

® To calculate the absolute best cp, bic, etc. we use either the which.min or
which.max function

adjr2.max <- which.max(summary(best_subset)$adjr2)
rss.min <- which.min(summary(best_subset)$rss)
cp.min <- which.min(summary(best_subset)$cp)
bic.min <- which.min(summary(best_subset)$bic)
data.frame(adjr2.max, rss.min, cp.min, bic.min)

## adjr2.max rss.min cp.min bic.min
## 1 15 17 15 9

® So what model is best?

® Usually the simplest model.
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Model Coefficients

® To show coefficients associated with the model with lowest bic, use coef:
coef (best_subset, bic.min)

## (Intercept) MolWeight NumBonds NumMultBonds
## 0.179049978 -0.007776351 -0.042507435 -0.368292209
## NumRotBonds NumAromaticBonds NumNitrogen NumOxygen
## -0.138979290 0.225474767 0.628386933 0.782490751
## NumChlorine SurfaceArea2
## -0.386474357 -0.008279467
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Model Coefficients

® To show coefficients associated with the model with lowest bic, use coef:
coef (best_subset, bic.min)

## (Intercept) MolWeight NumBonds NumMultBonds
## 0.179049978 -0.007776351 -0.042507435 -0.368292209
## NumRotBonds NumAromaticBonds NumNitrogen NumOxygen
## -0.138979290 0.225474767 0.628386933 0.782490751
## NumChlorine SurfaceArea2
## -0.386474357 -0.008279467

® And to get a vector of variable names, use names:
names (coef (best_subset, bic.min))

## [1] "(Intercept)" "MolWeight" "NumBonds" "NumMultBonds"
## [5] "NumRotBonds" "NumAromaticBonds" "NumNitrogen" "NumOxygen"
## [9] "NumChlorine" "SurfaceArea2"
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Forward Selection

Forward selection is a computationally efficient alternative to best subset
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Forward Selection

Forward selection is a computationally efficient alternative to best subset

® To perform forward selection, create the best 1 variable model. Then create p — 1
new 2 variable models by adding each other predictor one-at-a-time to the existing
1-variable model. Repeat for 3 variables and so on.
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Forward Selection

Forward selection is a computationally efficient alternative to best subset

® To perform forward selection, create the best 1 variable model. Then create p — 1
new 2 variable models by adding each other predictor one-at-a-time to the existing
1-variable model. Repeat for 3 variables and so on.

® Compared to Best Subset, forward selection computation time grows polynomially in
p: Num. Models =1 + @
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Forward Selection

Forward selection is a computationally efficient alternative to best subset

® To perform forward selection, create the best 1 variable model. Then create p — 1
new 2 variable models by adding each other predictor one-at-a-time to the existing
1-variable model. Repeat for 3 variables and so on.

® Compared to Best Subset, forward selection computation time grows polynomially in
p: Num. Models =1 + @

® Forward selection tends to favor parsimonous models
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Forward Selection

Forward selection is a computationally efficient alternative to best subset

® To perform forward selection, create the best 1 variable model. Then create p — 1
new 2 variable models by adding each other predictor one-at-a-time to the existing
1-variable model. Repeat for 3 variables and so on.

® Compared to Best Subset, forward selection computation time grows polynomially in

p: Num. Models =1 + @
® Forward selection tends to favor parsimonous models

® Downsides?
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Forward Selection

Forward selection is a computationally efficient alternative to best subset

® To perform forward selection, create the best 1 variable model. Then create p — 1
new 2 variable models by adding each other predictor one-at-a-time to the existing
1-variable model. Repeat for 3 variables and so on.

® Compared to Best Subset, forward selection computation time grows polynomially in

p: Num. Models =1 + @
® Forward selection tends to favor parsimonous models
® Downsides?

® Not guaranteed to find the best model (or even something close to the best model)
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Forward Selection

Forward selection is a computationally efficient alternative to best subset

® To perform forward selection, create the best 1 variable model. Then create p — 1
new 2 variable models by adding each other predictor one-at-a-time to the existing
1-variable model. Repeat for 3 variables and so on.

® Compared to Best Subset, forward selection computation time grows polynomially in

p: Num. Models =1 + @
® Forward selection tends to favor parsimonous models
® Downsides?

® Not guaranteed to find the best model (or even something close to the best model)

® Early predictors may become redundant
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Forward Selection

Forward selection is a computationally efficient alternative to best subset

® To perform forward selection, create the best 1 variable model. Then create p — 1
new 2 variable models by adding each other predictor one-at-a-time to the existing
1-variable model. Repeat for 3 variables and so on.

® Compared to Best Subset, forward selection computation time grows polynomially in

p: Num. Models =1 + @
® Forward selection tends to favor parsimonous models
® Downsides?

® Not guaranteed to find the best model (or even something close to the best model)
® Early predictors may become redundant

® Can be unstable
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Backward Elimination

Backward Elimination is another computationally efficient alternative to best subset
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Backward Elimination

Backward Elimination is another computationally efficient alternative to best subset

® To perform backward selection, begin with full model. Then create p —1 new p —1
variable models by removing one-at-a-time each other predictor from the existing
p-variable model. Repeat for p — 2 variables and so on.
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Backward Elimination

Backward Elimination is another computationally efficient alternative to best subset

® To perform backward selection, begin with full model. Then create p —1 new p —1
variable models by removing one-at-a-time each other predictor from the existing
p-variable model. Repeat for p — 2 variables and so on.

® Compared to Best Subset, backward elimination computation time grows polynomially

in p: Num. Models =1 + @
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Backward Elimination is another computationally efficient alternative to best subset

® To perform backward selection, begin with full model. Then create p —1 new p —1
variable models by removing one-at-a-time each other predictor from the existing
p-variable model. Repeat for p — 2 variables and so on.

® Compared to Best Subset, backward elimination computation time grows polynomially
in p: Num. Models =1 + @

® Backward elimination tends to favor in-depth models
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Backward Elimination

Backward Elimination is another computationally efficient alternative to best subset

® To perform backward selection, begin with full model. Then create p —1 new p —1
variable models by removing one-at-a-time each other predictor from the existing
p-variable model. Repeat for p — 2 variables and so on.

® Compared to Best Subset, backward elimination computation time grows polynomially
in p: Num. Models =1 + @

® Backward elimination tends to favor in-depth models
® Downsides?

® Not guaranteed to find the best model (or even something close to the best model)

® Requires fewer predictors than observations
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Backward Elimination is another computationally efficient alternative to best subset

® To perform backward selection, begin with full model. Then create p —1 new p —1
variable models by removing one-at-a-time each other predictor from the existing
p-variable model. Repeat for p — 2 variables and so on.

® Compared to Best Subset, backward elimination computation time grows polynomially
in p: Num. Models =1 + @

® Backward elimination tends to favor in-depth models
® Downsides?

® Not guaranteed to find the best model (or even something close to the best model)
® Requires fewer predictors than observations

® Susceptible to multicollinearity
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Backward Elimination

Backward Elimination is another computationally efficient alternative to best subset

® To perform backward selection, begin with full model. Then create p —1 new p —1
variable models by removing one-at-a-time each other predictor from the existing
p-variable model. Repeat for p — 2 variables and so on.

® Compared to Best Subset, backward elimination computation time grows polynomially
in p: Num. Models =1 + @
® Backward elimination tends to favor in-depth models
® Downsides?
® Not guaranteed to find the best model (or even something close to the best model)
® Requires fewer predictors than observations

® Susceptible to multicollinearity

® Can be unstable
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Forward /Backward Selection in R

We again use the regsubsets function in the leaps library.

forward_select<-regsubsets(Solubility~.-NumNonHBonds -NumHydrogen -NumRings,
solTrain, 17, "forward")

backward_elim<-regsubsets(Solubility~.-NumNonHBonds -NumHydrogen -NumRings,
solTrain, 17, "backward")

® All of the same tools used for best subsets are available for forward and backward selection
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Comparison of Models
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Model Testing

® Let's go with 4 models, based on best subset (since we have it)
® 5 variables (elbow of metric plots)
® 9 variables (best bic)
® 15 variables (best adjusted R?)
® 17 variables (the full model)

Subset Selection
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® We'll build each model on the training data, and then compute MSE on the test data.

## # A tibble: 4 x 2
## model mse
## <chr> <dbl>

## 1 model_15 0.928
## 2 model_9 0.966
## 3 model_5 1.13
## 4 model_17 4.31
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