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Outline

In today’s class, we will. . .
• Discuss further theory of logistic regression
• Implement logistic regression in R
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Section 1

Logistic Regression Theory
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Summary

• In a classification problem, we are interested a categorical response variable Y .

• We might be interested in predicting the class for Y based on observations, or we
might be interested in inferring the relationships between Y and predictors.
• Ideally, we would like to estimate the conditional probability of Y given X

P(Y = Aj |X)
• For binary response Y , we can use logistic regression, which assumes the log-odds of

Y = 1 is linear:

ln P(Y = 1|X)
1− P(Y = 1|X) = β0 + β1X1 + · · ·+ βpXp

• This implies the conditional probability is logistic:

P(Y = 1|X) = eβ0+β1X1+···+βpXp

1 + eβ0+β1X1+···+βpXp

• To classify, we assign a test observation the value 1 if

P(Y = 1|X) = eβ0+β1X1+···+βpXp

1 + eβ0+β1X1+···+βpXp
≥ 0.5
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Effect of Coefficients in Logistic Model
• Consider a logistic regression model for a binary categorical variable Y based on a
single predictor X .

ln
p(X)

1 − p(X)
= β0 + β1X p(X) =

eβ0+β1X

1 + eβ0+β1X
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Regression Coefficient Estimates

• Assume that the log-odds of Y = 1 is indeed linear in X1, . . . ,Xp, so that

ln p(X)
1− p(X) = β0 + β1X1 + · · ·+ βpXp

• We need to estimate the parameters β0, β1, . . . , βp based on training data.

• We could use the Method of Least Squares, as we did with Linear Regression.
• But there isn’t a closed-from solution as in Linear Regression
• And in practice, residuals tend not to be approximately Normally distributed

• Instead, we use the method of Maximum Likelihood (ML)
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The Method of Maximum Likelihood

• Under ML, we compare all possible models and select the one for which the observed
data had highest probability of occurring

• Suppose we have k observations with y = 1 and n − k with y = 0.
• Assume we’ve relabeled indices so the first k observations have y = 1
• As before, we assume

p(X) =
eβ0+β1X1+···+βpXp

1 + eβ0+β1X1+···+βpXp

• Then the probability of the observed data is

`(β0, β1, . . . , βp) =
k∏

i=1

p(xi )
n∏

j=k+1

(1 − p(xj ))

• View ` as a function of parameters β0, . . . , βp for fixed observations x1, . . . , xn.

• The goal is to choose β̂0, β̂1, . . . , β̂p so as to maximize `
• How? (Calculus or numeric methods, or R!)
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Section 2

Logistic Regression Practice
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The Unsinkable Example

The Titanic data set contains information on passengers of the Titanic
## Rows: 1,313
## Columns: 11
## $ row.names <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1~
## $ pclass <chr> "1st", "1st", "1st", "1st", "1st", "1st", "1st", "1st", "1st~
## $ survived <dbl> 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, ~
## $ name <chr> "Allen, Miss Elisabeth Walton", "Allison, Miss Helen Loraine~
## $ age <dbl> 29.0000, 2.0000, 30.0000, 25.0000, 0.9167, 47.0000, 63.0000,~
## $ embarked <chr> "Southampton", "Southampton", "Southampton", "Southampton", ~
## $ home.dest <chr> "St Louis, MO", "Montreal, PQ / Chesterville, ON", "Montreal~
## $ room <chr> "B-5", "C26", "C26", "C26", "C22", "E-12", "D-7", "A-36", "C~
## $ ticket <chr> "24160 L221", NA, NA, NA, NA, NA, "13502 L77", NA, NA, NA, "~
## $ boat <chr> "2", NA, "(135)", NA, "11", "3", "10", NA, "2", "(22)", "(12~
## $ sex <chr> "female", "female", "male", "female", "male", "male", "femal~

• Goal: Determine relationship between survival, sex, and age.

• Is this primarily an inference or prediction task?
• Can it be neither?
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Data Analysis
library(skimr)
Titanic %>% select(age, sex, survived) %>% summary()

## age sex survived
## Min. : 0.1667 Length:1313 Min. :0.000
## 1st Qu.:21.0000 Class :character 1st Qu.:0.000
## Median :30.0000 Mode :character Median :0.000
## Mean :31.1942 Mean :0.342
## 3rd Qu.:41.0000 3rd Qu.:1.000
## Max. :71.0000 Max. :1.000
## NA's :680
Titanic %>% count(sex)

## # A tibble: 2 x 2
## sex n
## <chr> <int>
## 1 female 463
## 2 male 850
Titanic %>% count(survived)

## # A tibble: 2 x 2
## survived n
## <dbl> <int>
## 1 0 864
## 2 1 449

• What are some concerns we may have about variables sex, age and survival?

library(tidyr)
Titanic1<-Titanic %>% drop_na(age)
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Data Analysis
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## Mean :31.1942 Mean :0.342
## 3rd Qu.:41.0000 3rd Qu.:1.000
## Max. :71.0000 Max. :1.000
## NA's :680
Titanic %>% count(sex)

## # A tibble: 2 x 2
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Titanic %>% count(survived)
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## 1 0 864
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library(tidyr)
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Children first?

• Who survived the Titanic?
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0.00

0.25

0.50

0.75

1.00

female male
sex

co
un

t survived

0

1

Nate Wells (Math 243: Stat Learning) Logistic Regression October 27th, 2021 14 / 29



Logistic Regression Theory Logistic Regression Practice Classification

Women and Children First?

Titanic1 %>% ggplot( aes( x = age, y = survived, color = sex))+
geom_jitter(height = .01, alpha = .5)+theme_bw()
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Logistic Model 1
Titanic1 %>% ggplot( aes( x = age, y = survived ))+

geom_jitter(height = .01, alpha = .5)+theme_bw()+
geom_smooth(method = "glm", method.args = list(family = "binomial"), se = F)
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VS Linear Model
Titanic1 %>% ggplot( aes( x = age, y = survived ))+

geom_jitter(height = .01, alpha = .5)+theme_bw()+
geom_smooth(method = "glm", method.args = list(family = "binomial"), se = F,size = 2,linetype = "dashed") +
geom_smooth(method = "lm", se = F, color = "red")
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Logistic Model 2:
library(moderndive)
Titanic1 %>% ggplot( aes( x = age, y = survived, color = sex ))+

geom_jitter(height = .01, alpha = .5)+theme_bw()+
geom_parallel_slopes(method = "glm", method.args = list(family = "binomial"), se = F)+
labs(title = "Logistic Regression, survival ~ age + sex")
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Logistic Model 3:
library(moderndive)
Titanic1 %>% ggplot( aes( x = age, y = survived, color = sex ))+

geom_jitter(height = .01, alpha = .5)+theme_bw()+
geom_smooth(method = "glm", method.args = list(family = "binomial"), se = F)+
labs(title = "Logistic Regression, survival ~ age*sex")
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R code for Logistic Models

simple_logreg <- glm(survived ~ age, data = Titanic1, family = "binomial")
summary(simple_logreg)

##
## Call:
## glm(formula = survived ~ age, family = "binomial", data = Titanic1)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.2260 -1.0972 -0.9908 1.2502 1.4601
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.117195 0.187746 0.624 0.5325
## age -0.011029 0.005493 -2.008 0.0446 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 869.54 on 632 degrees of freedom
## Residual deviance: 865.47 on 631 degrees of freedom
## AIC: 869.47
##
## Number of Fisher Scoring iterations: 4

• The logistic model is

ln
p(Age)

1 − p(Age)
= 0.11 − 0.01 · Age

• Since

e−0.011 = 0.989 = 1 − 0.011

increasing age by 1 year decreases
survival probability by 1.1% of the
current probability.
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R code for Logistic Models

simple_logreg <- glm(survived ~ age, data = Titanic1, family = "binomial")
summary(simple_logreg)

##
## Call:
## glm(formula = survived ~ age, family = "binomial", data = Titanic1)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
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##
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##
## Null deviance: 869.54 on 632 degrees of freedom
## Residual deviance: 865.47 on 631 degrees of freedom
## AIC: 869.47
##
## Number of Fisher Scoring iterations: 4

• Where is RSE? R2? F -stat?

• Logistic regression is from the family of
generalized linear models

• GLiMs use deviance as metric of
model fit.

• Null deviance measures how well
the null model (only intercept)
predicts the data

• Residual deviance measures how
well the fitted model predicts the
data

• Fisher Scoring Iterations indicates the
number of loops of numeric
optimization algorithm
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R code for Multiple Logistic Models

• Suppose we fit a logistic model for survived ~ age + sex:
logreg <- glm(survived ~ age + sex, data = Titanic1, family = "binomial")
summary(logreg)

##
## Call:
## glm(formula = survived ~ age + sex, family = "binomial", data = Titanic1)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.0153 -0.7062 -0.6071 0.6452 1.9332
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.915850 0.278035 6.891 5.55e-12 ***
## age -0.012921 0.006864 -1.882 0.0598 .
## sexmale -2.841503 0.209064 -13.592 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 869.54 on 632 degrees of freedom
## Residual deviance: 627.45 on 630 degrees of freedom
## AIC: 633.45
##
## Number of Fisher Scoring iterations: 4

• What is the formula for the logistic
model?

• What is the survival probability for a
male child of age 5? A female child of
age 5?

• What effect does being male have on
survival probability?
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R code for Multiple Logistic Models

• Suppose we fit a logistic model for survived ~ age * sex:
logreg2 <- glm(survived ~ age * sex, data = Titanic1, family = "binomial")
summary(logreg2)

##
## Call:
## glm(formula = survived ~ age * sex, family = "binomial", data = Titanic1)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.1915 -0.7257 -0.4730 0.6661 2.2390
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.83092 0.36632 2.268 0.0233 *
## age 0.02342 0.01188 1.971 0.0487 *
## sexmale -1.09657 0.46711 -2.348 0.0189 *
## age:sexmale -0.05935 0.01521 -3.903 9.5e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 869.54 on 632 degrees of freedom
## Residual deviance: 611.19 on 629 degrees of freedom
## AIC: 619.19
##
## Number of Fisher Scoring iterations: 4

• What is the formula for the logistic
model?

• What is the survival probability for a
male child of age 5? A female child of
age 5?

• What effect does being male have on
survival probability?
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R code for Multiple Logistic Models
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Section 3

Classification
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Classification using Logistic Regression

Develop a classification scheme based on the linear regression model.

Ŷ =
{
1, if p(X) ≥ 1− p(X),
0, otherwise.

Ŷ =
{
1, if odds ≥ 1,
0, if odds < 1

Ŷ =
{
1, if log odds ≥ 0,
0, if log odds < 0
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Prediction and Classification in R

Suppose we have 10 hypothetical passengers with the following age/sex combinations:
passengers

## age sex
## 1 10 male
## 2 14 female
## 3 18 male
## 4 22 male
## 5 26 female
## 6 30 male
## 7 34 male
## 8 38 male
## 9 42 female
## 10 46 female
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Prediction and Classification in R

What are their survival log odds?
odds<- predict(logreg2, passengers)
odds

## 1 2 3 4 5 6 7
## -0.6249665 1.1587938 -0.9124210 -1.0561483 1.4398280 -1.3436028 -1.4873301
## 8 9 10
## -1.6310573 1.8145403 1.9082184

Survival probabilities?
probs <- predict(logreg2, passengers, type = "response")
probs

## 1 2 3 4 5 6 7 8
## 0.3486527 0.7611135 0.2865047 0.2580462 0.8084280 0.2069182 0.1843228 0.1636856
## 9 10
## 0.8599097 0.8708189

Classification?
ifelse(probs >= .5, 1, 0)

## 1 2 3 4 5 6 7 8 9 10
## 0 1 0 0 1 0 0 0 1 1
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Confusion Matrix

How well does our model do on training data? We’ll use several functions from the
yardstick package.

• First, we create data frame comparing observed and predicted classes:
probs<-predict(logreg2, Titanic1, type = "response")
preds<-as.factor( ifelse(probs >=.5, 1, 0))
obs <- as.factor(Titanic1$survived)
results <- data.frame(obs, preds)

• And then create a confusion matrix using conf_mat from yardstick
library(yardstick)
conf_mat(results, truth = obs, estimate = preds)

## Truth
## Prediction 0 1
## 0 308 82
## 1 44 199
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Error Measures

• The overall error rate is the proportion of incorrect classifications:

error rate = 1
n

n∑
i=1

I(yi 6= ŷi )

• In yardstick, the accuracy function returns the proportion of correct classifications:
accuracy(results, truth = obs, estimate = preds)

## # A tibble: 1 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 accuracy binary 0.801

• Accuracy is the sum of the diagonal elements in the confusion matrix divided by the
total number of observations.
• To obtain the error rate, we pull the accuracy estimate and subtract from 1:

acc <- accuracy(results, truth = obs, estimate = preds) %>% pull(.estimate)
1 - acc

## [1] 0.1990521
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