Ridge Regression in R

Nate Wells

Math 243: Stat Learning

October 13th, 2021

Outline

In today's class, we will...

• Implement Ridge Regression in R

Section 1

Ridge Regression in R

• To perform Ridge Regression, we find coefficients β in the linear model that minimize

$$\operatorname{RSS} + \lambda \sum_{i=1}^{p} \beta_{i}^{2}$$
 where $\lambda \geq 0$ is tuning parameter

• To perform Ridge Regression, we find coefficients β in the linear model that minimize

$$\operatorname{RSS} + \lambda \sum_{i=1}^{p} \beta_{i}^{2}$$
 where $\lambda \geq 0$ is tuning parameter

• The term $\lambda \sum_{i=1}^{p} \beta_i^2$ is the **shrinkage penalty**, and is small when the β are small.

• To perform Ridge Regression, we find coefficients β in the linear model that minimize

$$\operatorname{RSS} + \lambda \sum_{i=1}^{p} \beta_i^2 \qquad \text{where } \lambda \ge \mathbf{0} \text{ is tuning parameter}$$

- The term $\lambda \sum_{i=1}^{p} \beta_i^2$ is the **shrinkage penalty**, and is small when the β are small.
- With a shrinkage penalty, the algorithm prefers models with lower coefficients.

• To perform **Ridge Regression**, we find coefficients β in the linear model that minimize

$$\operatorname{RSS} + \lambda \sum_{i=1}^{p} \beta_i^2$$
 where $\lambda \ge 0$ is tuning parameter

- The term $\lambda \sum_{i=1}^{p} \beta_i^2$ is the **shrinkage penalty**, and is small when the β are small.
- With a shrinkage penalty, the algorithm prefers models with lower coefficients.
- This tends to reduce variance, at the cost of increased bias.

• Suppose $\hat{y} = 1 + 0.01x_1 + 20x_2$ is the best fitting linear model for Y using X_1 and X_2 , and that both are statistically significant.

- Suppose $\hat{y} = 1 + 0.01x_1 + 20x_2$ is the best fitting linear model for Y using X_1 and X_2 , and that both are statistically significant.
 - Are we justified in saying that X_2 is a more important predictor than X_1 ?

- Suppose $\hat{y} = 1 + 0.01x_1 + 20x_2$ is the best fitting linear model for Y using X_1 and X_2 , and that both are statistically significant.
 - Are we justified in saying that X_2 is a more important predictor than X_1 ?
 - What if $sd(x_1) = 10000$ and $sd(x_2) = .1?$
- Suppose we first standardize X₁ and X₂ by subtracting off their means and dividing by their standard deviations:

$$Z_1 = rac{X_1 - \mu_1}{\sigma_1}$$
 $Z_2 = rac{X_2 - \mu_2}{\sigma_2}$

- Suppose $\hat{y} = 1 + 0.01x_1 + 20x_2$ is the best fitting linear model for Y using X_1 and X_2 , and that both are statistically significant.
 - Are we justified in saying that X_2 is a more important predictor than X_1 ?
 - What if $sd(x_1) = 10000$ and $sd(x_2) = .1?$
- Suppose we first standardize X₁ and X₂ by subtracting off their means and dividing by their standard deviations:

$$Z_1 = rac{X_1 - \mu_1}{\sigma_1}$$
 $Z_2 = rac{X_2 - \mu_2}{\sigma_2}$

• If we build a model and find $\hat{y} = 1 + 0.01z_1 + 20z_2$, where Z_1 and Z_2 are standardized, are we now justified in saying that Z_2 is more important than Z_1 ?

- Suppose $\hat{y} = 1 + 0.01x_1 + 20x_2$ is the best fitting linear model for Y using X_1 and X_2 , and that both are statistically significant.
 - Are we justified in saying that X_2 is a more important predictor than X_1 ?
 - What if $sd(x_1) = 10000$ and $sd(x_2) = .1?$
- Suppose we first standardize X₁ and X₂ by subtracting off their means and dividing by their standard deviations:

$$Z_1 = rac{X_1 - \mu_1}{\sigma_1}$$
 $Z_2 = rac{X_2 - \mu_2}{\sigma_2}$

- If we build a model and find $\hat{y} = 1 + 0.01z_1 + 20z_2$, where Z_1 and Z_2 are standardized, are we now justified in saying that Z_2 is more important than Z_1 ?
 - Assuming both are statistically significant, we are probably justified.

Scale

• The coefficients in the least squares regression equation are scale-equivalent

- The coefficients in the least squares regression equation are scale-equivalent
 - That is, scaling a predictor by a value c just leads to scaling the estimate by 1/c.

- The coefficients in the least squares regression equation are scale-equivalent
 - That is, scaling a predictor by a value c just leads to scaling the estimate by 1/c.
 - The predicted value is the same, regardless of scale.

- The coefficients in the least squares regression equation are scale-equivalent
 - That is, scaling a predictor by a value c just leads to scaling the estimate by 1/c.
 - The predicted value is the same, regardless of scale.
 - Therefore, rescaling predictors *does not* change the fit of the model (RSS is the same)

- The coefficients in the least squares regression equation are scale-equivalent
 - That is, scaling a predictor by a value c just leads to scaling the estimate by 1/c.
 - The predicted value is the same, regardless of scale.
 - Therefore, rescaling predictors *does not* change the fit of the model (RSS is the same)
 - Suppose $y = 1 + 0.01x_1 + 20x_2$, $\sigma_1 = 10000$, $\sigma_2 = 0.1$, and both x_1, x_2 have mean 0.
 - After rescaling, $z_1 = \frac{x_1}{10000}, z_2 = \frac{x_2}{0.1}$ and the linear model is

$$y = 100z_1 + 2z_2$$

• However, for Ridge Regression, coefficient estimates can change depending on scale.

- The coefficients in the least squares regression equation are scale-equivalent
 - That is, scaling a predictor by a value c just leads to scaling the estimate by 1/c.
 - The predicted value is the same, regardless of scale.
 - Therefore, rescaling predictors *does not* change the fit of the model (RSS is the same)
 - Suppose $y = 1 + 0.01x_1 + 20x_2$, $\sigma_1 = 10000$, $\sigma_2 = 0.1$, and both x_1, x_2 have mean 0.
 - After rescaling, $z_1 = \frac{x_1}{10000}, z_2 = \frac{x_2}{0.1}$ and the linear model is

$$y = 100z_1 + 2z_2$$

- However, for Ridge Regression, coefficient estimates can change depending on scale.
 - Recall the shrinkage penalty is $\lambda \sum_{i=1}^{2} \beta_i^2 = \lambda (0.01^2 + 20^2)$

- The coefficients in the least squares regression equation are scale-equivalent
 - That is, scaling a predictor by a value c just leads to scaling the estimate by 1/c.
 - The predicted value is the same, regardless of scale.
 - Therefore, rescaling predictors *does not* change the fit of the model (RSS is the same)
 - Suppose $y = 1 + 0.01x_1 + 20x_2$, $\sigma_1 = 10000$, $\sigma_2 = 0.1$, and both x_1, x_2 have mean 0.
 - After rescaling, $z_1 = \frac{x_1}{10000}, z_2 = \frac{x_2}{0.1}$ and the linear model is

$$y = 100z_1 + 2z_2$$

- However, for Ridge Regression, coefficient estimates can change depending on scale.
 - Recall the shrinkage penalty is $\lambda \sum_{i=1}^{2} \beta_i^2 = \lambda (0.01^2 + 20^2)$
 - Which models will ridge regression favor?

- The coefficients in the least squares regression equation are scale-equivalent
 - That is, scaling a predictor by a value c just leads to scaling the estimate by 1/c.
 - The predicted value is the same, regardless of scale.
 - Therefore, rescaling predictors *does not* change the fit of the model (RSS is the same)
 - Suppose $y = 1 + 0.01x_1 + 20x_2$, $\sigma_1 = 10000$, $\sigma_2 = 0.1$, and both x_1, x_2 have mean 0.
 - After rescaling, $z_1 = \frac{x_1}{10000}, z_2 = \frac{x_2}{0.1}$ and the linear model is

$$y = 100z_1 + 2z_2$$

- However, for Ridge Regression, coefficient estimates can change depending on scale.
 - Recall the shrinkage penalty is $\lambda \sum_{i=1}^{2} \beta_i^2 = \lambda (0.01^2 + 20^2)$
 - Which models will ridge regression favor?
- Ridge regression is most effective if predictors are standardized first.

Solubility

The solubility data set from the AppliedPredictiveModeling package contains solubility and chemical structure for a sample of 1,267 different compounds.

• But suppose we only have a fraction of the data to work with...

Solubility

The solubility data set from the AppliedPredictiveModeling package contains solubility and chemical structure for a sample of 1,267 different compounds.

• But suppose we only have a fraction of the data to work with...

```
set.seed(1013)
library(AppliedPredictiveModeling)
data(solubility)
solTest <- data.frame(solTestX, Solubility = solTestY) %>% sample_frac(.3)
solTrain <- data.frame(solTrainX, Solubility = solTrainY) %>% sample_frac(.3)
solTest <- solTest %>% dplyr::select(!starts_with("FP"))
solTrain <- solTrain %>% dplyr::select(!starts_with("FP"))
```

Solubility

The solubility data set from the AppliedPredictiveModeling package contains solubility and chemical structure for a sample of 1,267 different compounds.

• But suppose we only have a fraction of the data to work with...

```
set.seed(1013)
library(AppliedPredictiveModeling)
data(solubility)
solTest <- data.frame(solTestX, Solubility = solTestY) %>% sample_frac(.3)
solTrain <- data.frame(solTrainX, Solubility = solTrainY) %>% sample_frac(.3)
solTest <- solTest %>% dplyr::select(!starts_with("FP"))
solTrain <- solTrain %>% dplyr::select(!starts_with("FP"))
```

• Our goal is to predict solubility using the 20 chemical structure attributes.

Multicollinearity

- · Recall that several predictors were very strongly correlated
 - We even removed several from our linear model because of they were completed determined by the values of other variables (NumNonHBonds NumHydrogen NumRings)

Feature Selection

 Previously, we used regsubsets from the leaps package to choose the best model: best15 <-lm(Solubility ~.-NumNonHBonds -NumHydrogen -NumRings -NumNitrogen -NumOxygen, data = solTrain)

Feature Selection

```
    Previously, we used regsubsets from the leaps package to choose the best model:
best15 <-lm(Solubility ~.-NumNonHBonds -NumHydrogen -NumRings
-NumNitrogen -NumOxygen,
data = solTrain)
```

And computed the MSE of the model on test data

```
preds <- predict(best15, solTest)
data.frame(
    mse = mean((solTest$Solubility - preds)^2)
    )</pre>
```

mse ## 1 0.754869

Variable Importance

• The summary table suggests most variables have very significant p-value.

```
##
## Call:
## lm(formula = Solubility ~ . - NumNonHBonds - NumHydrogen - NumRings -
       NumNitrogen - NumOxygen, data = solTrain)
##
##
## Residuals:
##
        Min
                 10 Median
                                   30
                                           Max
## -2.93489 -0.57479 0.08137 0.60908 1.88354
##
## Coefficients:
##
                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                     0.313835 0.297830 1.054 0.292947
## MolWeight
                    -0.008262
                                0.002760 -2.994 0.003010 **
## NumAtoms
                     0.224406
                                0.149054 1.506 0.133360
## NumNonHAtoms
                    1.219121
                                0.205416 5.935 9.03e-09 ***
## NumBonds
                    -0.547814
                                0.177397 -3.088 0.002225 **
## NumMultBonds
                   -1.366339 0.380031 -3.595 0.000385 ***
## NumRotBonds
                    -0.088494
                                0.053531 -1.653 0.099471 .
## NumDblBonds
                     0.472754
                                0.316741 1.493 0.136725
                                0.347495 2.860 0.004567 **
## NumAromaticBonds
                     0.993862
## NumCarbon
                    -0.405111
                                0.124706 -3.249 0.001307 **
## NumSulfer
                                0.445427 0.801 0.424053
                   0.356621
## NumChlorine
                   -0.288069
                                0.161321 -1.786 0.075276
## NumHalogen
                    -1.326534
                                0.280328 -4.732 3.59e-06 ***
## HydrophilicFactor 0.207625
                                0.154632 1.343 0.180501
## SurfaceArea1
                     0.033006
                                0.014604 2.260 0.024616 *
## SurfaceArea2
                    -0.050940
                                0.016919 -3.011 0.002853 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9271 on 269 degrees of freedom
## Multiple R-squared: 0.791, Adjusted R-squared: 0.7794
## F-statistic: 67.88 on 15 and 269 DF, p-value: < 2.2e-16
   Nate Wells (Math 243: Stat Learning)
                                                      Ridge Regression in R
```

Rescaling a Data Frame

• We can use the scale function in R to standardize every column of a data frame: std_solTrain <- scale(solTrain) %>% as.data.frame()

Rescaling a Data Frame

• We can use the scale function in R to standardize every column of a data frame: std_solTrain <- scale(solTrain) %>% as.data.frame()

• A quick verification:

Rescaling a Data Frame

• We can use the scale function in R to standardize every column of a data frame: std_solTrain <- scale(solTrain) %>% as.data.frame()

• A quick verification:

##		df	mean_sol	sd_sol
##	1	solTrain	-2.775	1.974
##	2	std_solTrain	0.000	1.000

Scaled Model Coefficients

• Some coefficients are still relatively large (possibly because of collinearity)

```
##
## Call:
## lm(formula = Solubility ~ . - NumNonHBonds - NumHydrogen - NumRings -
       NumNitrogen - NumOxygen, data = std_solTrain)
##
##
## Residuals:
##
        Min
                 10 Median
                                   30
                                           Max
## -1.48705 -0.29123 0.04123 0.30861 0.95435
##
## Coefficients:
##
                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                   -1.697e-15 2.782e-02 0.000 1.000000
## MolWeight
                    -4.102e-01 1.370e-01 -2.994 0.003010 **
## NumAtoms
                     1.442e+00 9.581e-01 1.506 0.133360
## NumNonHAtoms
                     3.877e+00 6.532e-01 5.935 9.03e-09 ***
## NumBonds
                    -3.765e+00 1.219e+00 -3.088 0.002225 **
## NumMultBonds
                   -3.394e+00 9.439e-01 -3.595 0.000385 ***
## NumBotBonds
                    -1.078e-01 6.523e-02 -1.653 0.099471
## NumDblBonds
                     2.788e-01 1.868e-01
                                          1.493 0.136725
## NumAromaticBonds 2,508e+00 8,767e-01
                                          2.860 0.004567 **
## NumCarbon
                    -1.083e+00 3.334e-01 -3.249 0.001307 **
## NumSulfer
                   1.087e-01 1.358e-01
                                          0.801 0.424053
## NumChlorine
                   -1.977e-01 1.107e-01 -1.786 0.075276
## NumHalogen
                   -9.479e-01 2.003e-01 -4.732 3.59e-06 ***
## HvdrophilicFactor 1.032e-01 7.689e-02
                                          1.343 0.180501
## SurfaceArea1
                   5.306e-01 2.348e-01
                                          2.260 0.024616 *
## SurfaceArea2
                    -9.311e-01 3.092e-01 -3.011 0.002853 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4697 on 269 degrees of freedom
## Multiple R-squared: 0.791, Adjusted R-squared: 0.7794
## F-statistic: 67.88 on 15 and 269 DF, p-value: < 2.2e-16
```

 In order to use ridge regression, we need to separate our training data into a predictor matrix and a response vector:

 In order to use ridge regression, we need to separate our training data into a predictor matrix and a response vector:

```
x<-model.matrix(Solubility ~., data = solTrain)[,-1]
y<-solTrain$Solubility</pre>
```

 In order to use ridge regression, we need to separate our training data into a predictor matrix and a response vector:

```
x<-model.matrix(Solubility ~., data = solTrain)[,-1]
y<-solTrain$Solubility</pre>
```

- The model.matrix function creates a matrix of predictors and converts all categorical variables to dummy variables
- The [,-1] code selects all columns of the model matrix except the 1st (which corresponds to the intercept)

 In order to use ridge regression, we need to separate our training data into a predictor matrix and a response vector:

```
x<-model.matrix(Solubility ~., data = solTrain)[,-1]
y<-solTrain$Solubility</pre>
```

- The model.matrix function creates a matrix of predictors and converts all categorical variables to dummy variables
- The [,-1] code selects all columns of the model matrix except the 1st (which corresponds to the intercept)
- We also create vector grid of suitable tuning parameters λ.

```
grid = 10^(seq( -5, 5, length = 100))
head(grid)
```

[1] 1.000000e-05 1.261857e-05 1.592283e-05 2.009233e-05 2.535364e-05
[6] 3.199267e-05

 In order to use ridge regression, we need to separate our training data into a predictor matrix and a response vector:

```
x<-model.matrix(Solubility ~., data = solTrain)[,-1]
y<-solTrain$Solubility</pre>
```

- The model.matrix function creates a matrix of predictors and converts all categorical variables to dummy variables
- The [,-1] code selects all columns of the model matrix except the 1st (which corresponds to the intercept)
- We also create vector grid of suitable tuning parameters λ.

```
grid = 10^(seq( -5, 5, length = 100))
head(grid)
```

```
## [1] 1.000000e-05 1.261857e-05 1.592283e-05 2.009233e-05 2.535364e-05
## [6] 3.199267e-05
```

• The grid of values should be changed depending on the problem at hand.

```
library(glmnet)
ridge_mod <- glmnet(x, y, alpha = 0, lambda = grid)</pre>
```

```
library(glmnet)
ridge_mod <- glmnet(x, y, alpha = 0, lambda = grid)</pre>
```

- The alpha argument in glmnet determines the type of penalty
 - alpha = 0 corresponds to Ridge Regression. alpha = 1 corresponds to LASSO (Friday's class)

```
library(glmnet)
ridge_mod <- glmnet(x, y, alpha = 0, lambda = grid)</pre>
```

- The alpha argument in glmnet determines the type of penalty
 - alpha = 0 corresponds to Ridge Regression. alpha = 1 corresponds to LASSO (Friday's class)
- By default, glmnet standardizes observations. To use unstandardized observations, add standardize = FALSE

```
library(glmnet)
ridge_mod <- glmnet(x, y, alpha = 0, lambda = grid)</pre>
```

- The alpha argument in glmnet determines the type of penalty
 - alpha = 0 corresponds to Ridge Regression. alpha = 1 corresponds to LASSO (Friday's class)
- By default, glmnet standardizes observations. To use unstandardized observations, add standardize = FALSE
- Here, we gave a specific range of values for the tuning parameter. But if no lambda value is supplied, the function will automatically select a range.

```
library(glmnet)
ridge_mod <- glmnet(x, y, alpha = 0, lambda = grid)</pre>
```

- The alpha argument in glmnet determines the type of penalty
 - alpha = 0 corresponds to Ridge Regression. alpha = 1 corresponds to LASSO (Friday's class)
- By default, glmnet standardizes observations. To use unstandardized observations, add standardize = FALSE
- Here, we gave a specific range of values for the tuning parameter. But if no lambda value is supplied, the function will automatically select a range.
- Remember! x needs to be the model matrix and y needs to be the response vector. glmnet does not use the formula syntax of lm.

- Applying coef to the glmnet object gives a matrix of regression coefficients
 - one column for each value of lambda and one row for each predictor (and intercept)

- Applying coef to the glmnet object gives a matrix of regression coefficients
 - one column for each value of lambda and one row for each predictor (and intercept)
- An example of several rows and columns:

```
coef(ridge_mod)[1:5,1:6]
```

```
## 5 x 6 sparse Matrix of class "dgCMatrix"
##
                       s0
                                 s1
                                           s2
                                                     $3
                                                               s4
                                                                          s5
## (Intercept) -2.78e+00 -2.77e+00 -2.77e+00 -2.77e+00 -2.77e+00 -2.77e+00
## MolWeight
              -2.60e-07 -3.28e-07 -4.14e-07 -5.22e-07 -6.59e-07 -8.31e-07
## NumAtoms
                -1.34e-06 -1.69e-06 -2.13e-06 -2.69e-06 -3.40e-06 -4.29e-06
## NumNonHAtoms -3,54e-06 -4,47e-06 -5,64e-06 -7,11e-06 -8,97e-06 -1,13e-05
## NumBonds
                -1.31e-06 -1.66e-06 -2.09e-06 -2.64e-06 -3.33e-06 -4.20e-06
coef(ridge_mod)[1:5,95:100]
```

##	5 x 6 sparse	Matrix of	class "o	igCMatrix"	•		
##		s94	s95	s96	s97	s98	s99
##	(Intercept)	0.64413	0.64726	0.64976	0.65181	0.65347	0.65478
##	MolWeight	-0.00806	-0.00806	-0.00806	-0.00806	-0.00806	-0.00806
##	NumAtoms	0.01618	0.01758	0.01872	0.01969	0.02048	0.02110
##	NumNonHAtoms	0.15747	0.15971	0.16150	0.16299	0.16419	0.16514
##	NumBonds	-0.05314	-0.05411	-0.05491	-0.05557	-0.05612	-0.05655

In coef, columns are labeled by index of lambda (i.e. s₀, s₁, s₂). The actual values of lambda are stored in ridge_mod\$lambda

ridge_mod\$lambda

[11]

In coef, columns are labeled by index of lambda (i.e. s₀, s₁, s₂). The actual values of lambda are stored in ridge_mod\$lambda

ridge_mod\$lambda

 ##
 [1]
 100000
 79248
 62803
 49770
 39442
 31257
 24771
 19630
 15557
 12328

 ##
 [11]
 9770
 7743
 6136
 4863
 3854
 3054
 2420
 1918
 1520
 1205

• To find a particular value of lambda (i.e. s_{17}), subset the vector:

In coef, columns are labeled by index of lambda (i.e. s₀, s₁, s₂). The actual values of lambda are stored in ridge_mod\$lambda

ridge_mod\$lambda

62803 12328 [1] 100000 79248 49770 [11] 9770 7743 6136 4863 3854 3054 2420 1918 1520 1205

• To find a particular value of lambda (i.e. s_{17}), subset the vector:

ridge_mod\$lambda[17]

[1] 2420

In coef, columns are labeled by index of lambda (i.e. s₀, s₁, s₂). The actual values of lambda are stored in ridge_mod\$lambda

ridge_mod\$lambda

[1] 100000 79248 62803 49770 39442 31257 24771 19630 15557 12328 ## [11] 9770 7743 6136 4863 3854 3054 2420 1918 1520 1205

• To find a particular value of lambda (i.e. s_{17}), subset the vector:

ridge_mod\$lambda[17]

[1] 2420

• And to get the corresponding model, subset columns of the coef matrix:

 In coef, columns are labeled by index of lambda (i.e. s₀, s₁, s₂). The actual values of lambda are stored in ridge_mod\$lambda

ridge_mod\$lambda

[1] 100000 62803 12328 79248 49770 [11] 9770 7743 6136 4863 3854 3054 2420 1918 1520 1205

• To find a particular value of lambda (i.e. s_{17}), subset the vector:

ridge_mod\$lambda[17]

[1] 2420

• And to get the corresponding model, subset columns of the coef matrix: coef(ridge_mod)[,17]

##	(Intercept)	MolWeight	NumAtoms	NumNonHAtoms
##	-2.76e+00	-1.07e-05	-5.51e-05	-1.46e-04
##	NumBonds	NumNonHBonds	NumMultBonds	NumRotBonds
##	-5.39e-05	-1.27e-04	-1.48e-04	-9.05e-05
##	NumDblBonds	NumAromaticBonds	NumHydrogen	NumCarbon
##	-4.61e-06	-1.42e-04	-5.57e-05	-1.77e-04
##	NumNitrogen	NumOxygen	NumSulfer	NumChlorine
##	1.80e-04	9.81e-05	-3.87e-04	-5.38e-04
##	NumHalogen	NumRings	HydrophilicFactor	SurfaceArea
##	-5.42e-04	-6.44e-04	4.51e-04	9.04e-06
##	SurfaceArea2			
##	3 70e-06			

Coefficient Size

What happens to coefficient size as λ changes?

Coefficient Size

What happens to coefficient size as λ changes?
 plot(ridge_mod, xvar = "lambda")

ggplot2 for glmnet

• A better plot using the broom package to tidy the output of glmnet for ggplot2:

ggplot2 for glmnet

 A better plot using the broom package to tidy the output of glmnet for ggplot2: library(broom)
 tidied <- tidy(ridge_mod) %>% filter(term != "(Intercept)")
 ggplot(tidied, aes(lambda, estimate, group = term, color = term)) + geom_line() + scale_x_log10()+ theme_bw()+labs(title = "Coefficent estimates")

• Which values of lambda produce best model? $\lambda = 0.001, 1, 1000?$

- Which values of lambda produce best model? $\lambda = 0.001, 1, 1000?$
- The glmnet function already fit models, so we just need to make predictions:

- Which values of lambda produce best model? $\lambda = 0.001, 1, 1000?$
- The glmnet function already fit models, so we just need to make predictions:

```
x_tst <- model.matrix(Solubility ~., data = solTest)[,-1]
preds<- predict(ridge_mod, s = c(0.001, 1, 1000), newx = x_tst) %>% as.data.frame()
head(preds)
```

- Which values of lambda produce best model? $\lambda = 0.001, 1, 1000?$
- The glmnet function already fit models, so we just need to make predictions:

```
x_tst <- model.matrix(Solubility ~., data = solTest)[,-1]
preds<- predict(ridge_mod, s = c(0.001, 1, 1000), newx = x_tst) %>% as.data.frame()
head(preds)
```

```
## 1 2 3
## 1 -2.164 -2.540 -2.78
## 2 -3.609 -3.983 -2.78
## 3 -2.171 -2.353 -2.78
## 4 0.318 -0.456 -2.75
## 5 0.519 0.182 -2.75
## 6 -3.856 -3.548 -2.78
get_mse <- function(x){mean((solTest$Solubility-x)^2)}
preds %>% summarize(across(everything(), get_mse) )
```

1 2 3 ## 1 0.733 0.827 3.79

- Which values of lambda produce best model? $\lambda = 0.001, 1, 1000?$
- The glmnet function already fit models, so we just need to make predictions:

```
x_tst <- model.matrix(Solubility ~., data = solTest)[,-1]
preds<- predict(ridge_mod, s = c(0.001, 1, 1000), newx = x_tst) %>% as.data.frame()
head(preds)
```

```
## 1 2 3
## 1 -2.164 -2.540 -2.78
## 2 -3.609 -3.983 -2.78
## 3 -2.171 -2.353 -2.78
## 4 0.318 -0.456 -2.75
## 5 0.519 0.182 -2.75
## 6 -3.856 -3.548 -2.78
get_mse <- function(x){mean((solTest$Solubility-x)^2)}
preds %>% summarize(across(everything(), get_mse))
```

1 2 3 ## 1 0.733 0.827 3.79

But how do we find the **best** value of λ?

Cross Validation and glmnet

- We use the cv.glmmet function to perform cross-validation to compare MSE across all values of λ

Cross Validation and glmnet

• We use the cv.glmnet function to perform cross-validation to compare MSE across all values of λ

```
set.seed(1010)
my_cv<-cv.glmnet(x, y, alpha = 0, lambda = grid, nfolds = 10)
plot(my_cv)</pre>
```


Best Lambda

- The cv.glmnet object records the value of lambda that...
 - Has minimum error (lambda.min)
 - Is largest with error within 1 st. dev of minimum error (lambda.1se)

Best Lambda

- The cv.glmnet object records the value of lambda that...
 - Has minimum error (lambda.min)
 - Is largest with error within 1 st. dev of minimum error (lambda.1se)
 - Why is lambda.1se useful?

Best Lambda

- The cv.glmnet object records the value of lambda that...
 - Has minimum error (lambda.min)
 - Is largest with error within 1 st. dev of minimum error (lambda.1se)
 - Why is lambda.1se useful?

```
best_L<-my_cv$lambda.min
best_L</pre>
```

```
## [1] 0.0272
reg_L <-my_cv$lambda.1se
reg_L</pre>
```

```
## [1] 0.559
```

Better Plots

```
    As before, we can obtain a better plot using broom
tidied <- tidy(my_cv)
ggplot(tidied, aes(x = lambda, y = estimate))+geom_point( color = "red")+
scale_x_log10()+theme_bw()+labs(y = "MSE")+
geom_vline(xintercept = best_L, linetype = "dashed" )+
geom_vline(xintercept = reg_L, linetype = "dashed")
```


Overall Performance

• Let's compare performance for: the full model, the best 15 model, ridge regression with $\lambda = 0.027$, and ridge regression with $\lambda = 0.559$.

Overall Performance

• Let's compare performance for: the full model, the best 15 model, ridge regression with $\lambda = 0.027$, and ridge regression with $\lambda = 0.559$.

```
full_mod <- lm(Solubility ~ ., data = solTrain)
preds <- data.frame(
  full = predict(full_mod, solTest),
    best_15 = predict(best15, solTest),
    rr_min = c(predict(ridge_mod, s = best_L, newx = x_tst)),
    rr_1se = c(predict(ridge_mod, s = reg_L, newx = x_tst))
)
preds %>% summarize(across(everything(),get_mse))
```

full best_15 rr_min rr_1se
1 0.753 0.755 0.739 0.78

Ridge Regression wins!