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Penalized Regression Ridge Regression

Outline

In today’s class, we will. . .
• Investigate the relationship between coefficient size and variance in linear models
• Discuss penalized regression models as means of improving MSE of linear models
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Penalized Regression Ridge Regression

Section 1

Penalized Regression
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Penalized Regression Ridge Regression

Motivation

• Recall, for SLR, β̂0, β̂1 are given by

β̂1 =
∑n

i=1(xi − x̄)(yi − ȳ)∑n
i=1(xi − x̄)2

β̂0 = ȳ − β̂1x̄

• Under the standard assumptions, the coefficients produced by least squares regression
are unbiased.
• That is, if the true relationship between Y and X is linear Y = β0 + β1X + ε, then

E [β̂0] = β0 E [β̂1] = β1

• Moreover, among all unbiased linear models, the least squares model has the lowest
variance.
• Does this mean that the least squares model has the lowest MSE among all linear
models?

• No! MSE is a combination of bias and variance.
• It is possible that a small increase in bias can correspond to large decrease in variance.
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i=1(xi − x̄)2
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Penalized Regression Ridge Regression

Shrinking Coefficients

• Suppose the true relationship between Y and X1,X2 is given by

Y = 1 + X1 + 5X2 + ε ε ∼ N(0, 1).
• Let β̂0, β̂1, β̂2 be the model coefficient estimates given by least squares regression.
Which of the following models has higher variance in predictor estimates? Higher bias?

Model 1: ŷ =β̂0 + β̂1x1 + β̂2x2
Model 2: ŷ =β̂0 + 0.97 · β̂1x1 + 0.98 · β̂2x2

• Model 2 has higher bias, but lower variance.
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Penalized Regression Ridge Regression

A Linear Model

• Consider the following training data for the model:
Y = 1 + X1 + 5X2 + ε ε ∼ N(0, 1)
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• What are some likely problems with the MLR model?
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Penalized Regression Ridge Regression

Bias-Variance in Least Squares

• Using least squares, the model estimates are

Ŷ = −0.5 + 2.8X1 + 5.8X2

• Let’s consider variance and bias for estimate Y when X1 = 0.25 and X2 = .5.
• Using the true model, the expected value of Y is

Y = 1 + X1 + 5 · X2 = 1 + 0.25 + 5 · 0.5 = 3.75
• Using the least squares model from training data, the predicted value of Y is

Y = −0.5 + 2.8X1 + 5.8X2 = −0.5 + 2.8 · 0.25 + 5.8 · 0.5 = 3.1

• But how will the predicted value change if we repeat across 5000 simulations from the
model?
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Penalized Regression Ridge Regression

Simulation

set.seed(1011)
test_point <- data.frame(x1 = 0.25, x2 = .5)

trials<-5000
prediction <- rep(NA, trials)
for (i in 1:trials){

e<- rnorm(20,0,1)
y<- 1 + x1 + 5*x2 + e
sim_data <- data.frame(x1,x2,y)
mod <- lm(y ~ x1 + x2, data = sim_data)
prediction[i] <- predict(mod, test_point)

}

simulation <- data.frame(trial_num = 1:trials, prediction)
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Penalized Regression Ridge Regression

Prediction Distribution

True Value Average Prediction
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Distribution of Predictions across 5000 simulations

simulation %>% summarize(
mean = mean(prediction), variance = var(prediction))

## mean variance
## 1 3.772056 1.480935
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Penalized Regression Ridge Regression

A Shrunken Model

• Now suppose we use the model algorithm

ŷ = β̂0 + 0.97 · β̂1x1 + 0.98 · β̂2x2
• Since β̂0, β̂1, β̂2 are unbiased, then the expected prediction for Y when X1 = 0.25 and

X2 = 0.5 is

E [ŷ ] = β1 + 0.97 · β1x1 + 0.98 · β2x2 = 1 + 0.97 · 0.25 + 0.98 · 5 · 0.5 = 3.69

• Based on the first simulation, the model estimate is

Ŷ = −0.5 + 0.97 · 2.8X1 + 0.98 · 5.8X2 = −0.5 + 2.71X1 + 5.68X2

• And the prediction when X1 = 0.25 and X2 = 0.5 is

ŷ = −0.5 + 2.71X1 + 5.68X2 = −0.5 + 2.71 · 0.25 + 5.68 · 0.5 = 3.525
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Penalized Regression Ridge Regression

Simulation II

set.seed(1001)

trials<-5000
prediction2 <- rep(NA, trials)
for (i in 1:trials){

e<- rnorm(20,0,1)
y<- 1 + x1 + 5*x2 + e
sim_data <- data.frame(x1,x2,y)
mod <- lm(y ~ x1 + x2, data = sim_data)
b0 <- 1*coef(mod)[1]
b1 <- .97*coef(mod)[2]
b2 <- .98*coef(mod)[3]
prediction2[i] <- b0 + b1*0.25 + b2*0.5

}

simulation2 <- data.frame(trial_num = 1:trials, prediction2)
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Penalized Regression Ridge Regression

Prediction Distribution

Average Prediction True Value
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simulation2 %>% summarize(
mean = mean(prediction2), variance = var(prediction2))

## mean variance
## 1 3.70387 1.434099
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Penalized Regression Ridge Regression

Model Comparison

• True relationship: Y = 1 + X1 + 5X2 + ε

• Model 1: ŷ = β̂0 + β̂1x1 + β̂2x2
## mean variance avg_error
## 1 3.772056 1.480935 1.481125

• Model 2: ŷ = β̂0 + 0.97 · β̂1x1 + 0.98 · β̂2x2
## mean variance avg_error
## 1 3.70387 1.434099 1.435941

• It looks like the model with smaller coefficients actually performed better!
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• Model 2: ŷ = β̂0 + 0.97 · β̂1x1 + 0.98 · β̂2x2
## mean variance avg_error
## 1 3.70387 1.434099 1.435941

• It looks like the model with smaller coefficients actually performed better!

Nate Wells (Math 243: Stat Learning) Penalized Regression October 11th, 2021 13 / 21



Penalized Regression Ridge Regression

Section 2

Ridge Regression
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Penalized Regression Ridge Regression

Shrinkage Penalty

• There are some situations in which multiple linear regression has high MSE:

• Predictors are strongly correlated (high variance)
• Many predictors relative to data size (high variance)
• Model form is non-linear (high bias)

• To improve models in the first two cases, we reduce MSE by reducing variance at the
cost slight increase in bias.
• In the presence of multicollinearity or over-fitting, least squares estimates tend to be
too large.
• To build a better model, we reduce the size of coefficients relative to least squares
regression.
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Penalized Regression Ridge Regression

Ridge Regression

• Recall that least squares regression estimates β̂0, β̂1, . . . , β̂p for

ŷ = β0 + β1X1 + · · ·+ βpXp + ε
are obtained by finding the values of β that minimize

RSS =
n∑

i=1

(yi − ŷi )2 =
n∑

i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

• To perform Ridge Regression, we instead find coefficients β that minimize

RSS + λ

p∑
i=1

β2
i where λ ≥ 0 is tuning parameter

Why?
• The term λ

∑p
i=1 β

2
i is the shrinkage penalty, and is small when the β are small.

• With a shrinkage penalty, the algorithm prefers models with lower coefficients.
• This tends to reduce variance, at the cost of increased bias.
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• This tends to reduce variance, at the cost of increased bias.
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(yi − ŷi )2 =
n∑

i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

• To perform Ridge Regression, we instead find coefficients β that minimize

RSS + λ

p∑
i=1

β2
i where λ ≥ 0 is tuning parameter

Why?
• The term λ

∑p
i=1 β

2
i is the shrinkage penalty, and is small when the β are small.

• With a shrinkage penalty, the algorithm prefers models with lower coefficients.
• This tends to reduce variance, at the cost of increased bias.

Nate Wells (Math 243: Stat Learning) Penalized Regression October 11th, 2021 16 / 21



Penalized Regression Ridge Regression

Ridge Regression

• Recall that least squares regression estimates β̂0, β̂1, . . . , β̂p for
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Penalized Regression Ridge Regression

Effects of the Tuning Parameter

• Goal: Find β which minimize RSS + λ
∑p

i=1 β
2
i

• What will happen to βi as λ→∞? As λ→ 0?
• What will happen to β0 as λ→∞? As λ→ 0?
• What happens to MSE as λ→ 0 or λ→∞?
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Penalized Regression Ridge Regression

Simulation

• Consider a linear model with 9 predictors and 100 observations.

y = 10 + 1x1 + 2x2 · · ·+ 8x8 + 9x9 + ε ε ∼ N(0, 4)

##
## Call:
## lm(formula = y ~ ., data = sim_data2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.5148 -1.5155 -0.0932 1.8054 5.1007
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.6034 1.3023 0.463 0.6443
## `1` 0.2653 0.8831 0.300 0.7645
## `2` 2.1047 0.8005 2.629 0.0101 *
## `3` 1.9316 0.7766 2.487 0.0147 *
## `4` 3.5635 0.8133 4.382 3.18e-05 ***
## `5` 6.0143 0.7925 7.589 2.84e-11 ***
## `6` 5.2844 0.7810 6.766 1.30e-09 ***
## `7` 7.7421 0.8657 8.944 4.51e-14 ***
## `8` 9.1352 0.7466 12.236 < 2e-16 ***
## `9` 9.4859 0.8046 11.789 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.244 on 90 degrees of freedom
## Multiple R-squared: 0.8437, Adjusted R-squared: 0.828
## F-statistic: 53.97 on 9 and 90 DF, p-value: < 2.2e-16
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Penalized Regression Ridge Regression

Simulation

• What happens to the size of coefficients as λ gets larger?
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Penalized Regression Ridge Regression

Effect of Scale

• Suppose ŷ = 1 + 0.01x1 + 20x2 is the best fitting linear model for Y using X1 and X2,
and that both are statistically significant.

• Are we justified in saying that X2 is a more important predictor than X1?
• What if sd(x1) = 10000 and sd(x2) = .1?

• Suppose we first standardize X1 and X2 by subtracting off their means and dividing by
their standard deviations:

Z1 = X1 − µ1

σ1
Z2 = X2 − µ2

σ2

• If we build a model and find ŷ = 1 + 0.01z1 + 20z2, where Z1 and Z2 are standardized,
are we now justified in saying that Z2 is more important than Z1?

• Assuming both are statistically significant, we are probably justified.
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• Suppose ŷ = 1 + 0.01x1 + 20x2 is the best fitting linear model for Y using X1 and X2,
and that both are statistically significant.

• Are we justified in saying that X2 is a more important predictor than X1?

• What if sd(x1) = 10000 and sd(x2) = .1?

• Suppose we first standardize X1 and X2 by subtracting off their means and dividing by
their standard deviations:

Z1 = X1 − µ1

σ1
Z2 = X2 − µ2

σ2
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Penalized Regression Ridge Regression

Scale

• The coefficients in the least squares regression equation are scale-equivalent

• That is, scaling a predictor by a value c just leads to scaling the estimate by 1/c.
• The predicted value is the same, regardless of scale.
• Therefore, rescaling predictors does not change the fit of the model (RSS is the same)
• Suppose y = 1 + 0.01x1 + 20x2, σ1 = 10000, σ2 = 0.1, and both x1, x2 have mean 0.
• After rescaling, z1 = x1

10000 , z2 = x2
0.1 and the linear model is

y = 100z1 + 2z2

• However, for Ridge Regression, coefficient estimates can change depending on scale.
• Recall the shrinkage penalty is λ

∑2
i=1 β

2
i = λ(0.012 + 202)

• Which models will ridge regression favor?

• Ridge regression is most effective if predictors are standardized first.
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